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ABSTRACT 

The classical form of supply chain management, on its own, faces several challenges. Decision-makers, 

for instance, often struggle with the level of confidence in their judgements, since several key aspects 

are highly affected by uncertain aspects. This, together with the recent need to consider sustainability 

purposes in supply chain management, have greatly increased the complexity and robustness of the 

network’s management.   

As a response, several optimization methods have been studied in the literature as suitable to the 

modelling of uncertainty in the supply chain network design, being stochastic programming, fuzzy 

programming, and robust optimization some common approaches. Uncertainty concerns in the design 

of supply chain networks have been fairly acknowledged in the literature. Notwithstanding, research 

concerning sustainable supply chain design under uncertainty often lack more rigorous and 

sophisticated methods, namely, dynamic optimization and hybrid optimization approaches.   

Accordingly, the present dissertation focuses on the design and planning of sustainable supply chains 

under uncertainty, by providing a stochastic dynamic mathematical model formulation for several 

uncertain parameters, namely: demand, supply, products’ rate of return, and construction and 

transportation costs.  

Henceforth, the work begins by presenting the problem in study. Afterwards, the most common 

approaches used to model uncertainty are identified and described, followed by a thorough literature 

review whose purpose is to identify the relevant work being developed. Extensive considerations 

concerning the methodologies to apply are carefully discussed, followed by the stochastic dynamic 

mathematical model. The model validation is provided by accounting the representative case-study of 

Calzedonia Group, and final recommendations are stated. 

 

Keywords: Supply chain; Sustainability; Uncertainty; Stochastic optimization; Dynamic optimization; 

Calzedonia Group 

 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

RESUMO  

A gestão de cadeias de abastecimento acarreta diversos desafios, como a falta de confiança na tomada 

de decisão, dado que questões como a previsão da procura são afetadas por incerteza. Por outro lado, 

a crescente necessidade de considerar a sustentabilidade tem levado a uma mudança gradual na 

gestão de cadeias de abastecimento, onde questões económicas, ambientais e sociais têm sido 

incorporadas, levando a cadeias de abastecimento cada vez mais complexas.  

Diversos métodos de otimização têm sido abordados para a modelação de incerteza nas cadeias de 

abastecimento, como as programações estocástica e fuzzy, e a otimização robusta. A modelação de 

incerteza no projeto de cadeias de abastecimento tem recebido atenção considerável. Contudo, em 

casos de cadeias de abastecimento sustentáveis, é notória a insuficiência de estudos baseados em 

métodos de otimização mais rigorosos e sofisticados, como as otimizações dinâmica e híbrida.  

A presente dissertação foca-se na modelação de incerteza no projeto e planeamento de cadeias de 

abastecimento sustentáveis, com a formulação de um modelo estocástico dinâmico considerando 

diversos parâmetros incertos, como: procura, oferta, taxa de retorno de produtos em fim de ciclo de 

vida, e custos de construção e de transporte.  

Deste modo, o problema em estudo é definido, e a discussão dos métodos de otimização utilizados na 

modelação de incerteza, bem como uma revisão da literatura que identifica os avanços na área são 

apresentadas. As metodologias a aplicar são discutidas, e o modelo desenvolvido e validado num caso 

de estudo representativo ao Grupo Calzedonia. Finalmente, considerações e recomendações finais são 

fornecidas.  

 

Palavras-chave: Cadeias de abastecimento; Sustentabilidade; Incerteza; Otimização estocástica; 

Otimização dinâmica; Grupo Calzedonia  
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1. INTRODUCTION 

The purpose of the current chapter is to provide adequate context and information regarding the master 

dissertation on the decision-support tool development for sustainable supply chains under uncertainty, 

also highlighting both its objectives and structure. In section 1.1 a brief contextualization on supply chain, 

sustainability, and uncertainty is given. In section 1.2 the dissertation’s proposed objectives are listed. 

Lastly, in section 1.3, the structure and outline of the remaining document are provided. 

1.1. Problem Contextualization 

The term supply chain (SC) has firstly appeared in the literature in 1982 when Oliver and Webber 

proposed the first definition for the management of such systems, and since then, SC have become vital 

for every organization (Barbosa-Póvoa, da Silva, and Carvalho 2018). Forward supply chain is the 

classical form of SC and thus represents the combination of processes aimed at fulfilling customers’ 

requests at a minimum cost. Therefore, all possible network entities, such as suppliers, manufacturers, 

transporters, warehouses, retailers and customers are included in this system (Barbosa-Póvoa et al. 

2018; Govindan, Soleimani, and Kannan 2015). 

Over the years, however, there has been a growing concern in environmental issues, leading to the 

incorporation of reverse logistics in SC’s activities, where collection and treatment of end-of-life products 

through recycling or remanufacturing, repairing, and/or finally disposing of used parts, have been 

considered within these networks (Barbosa-Póvoa et al. 2018; Cardoso, Barbosa-Póvoa, and Relvas 

2013; Fleischmann et al. 1997). Consequently, closed-loop supply chain (CLSC) were also introduced 

as logistic systems whose goal is to maximize value creation over the entire product’s life cycle, by 

pursuing a dynamic recovery of the product value from several types and volumes of returns (Barbosa-

Póvoa et al. 2018). More recently, and apart from economic and environmental concerns, social issues, 

namely job creation, number of working hours, discrimination, and workers’ safety and satisfaction, have 

also started to be accounted for in the design, planning and operation of supply chains. 

Sustainable development has been defined by the Brundtland Commission (World Commission on 

Environment and Development, 1987) as the “development that meets the needs of the present without 

compromising the ability of future generations to meet their own needs”. This was later on associated 

with the three pillars of sustainability - economic, environmental, and social -, commonly known as the 

triple bottom line and firstly proposed by Elkington (1997). Accordingly, sustainable supply chain (SSC) 

refers to complex network systems involving numerous entities that manage products from suppliers to 

customers and their associated returns, always accounting for social, environmental and economic 

impacts (Barbosa-Póvoa 2014; Barbosa-Póvoa et al. 2018).  

Regardless the complexity, it is a path that must be taken towards meeting current society demands 

and consequently governmental regulations. Thus, worldwide legislations have been adopted to phase 

out chemicals with ozone depleting potential, and global warming has started to be seen as a societal 

issue both in the public and private sector (Linton, Klassen, and Jayaraman 2007). Moreover, the 

European Union (EU), Canada, Japan, China and the United States of America (USA) have become 

highly influential proponents of sustainability and hence legislations regarding the handling responsibility 
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of end-of-life products, such as directive 2002/96/EC on waste on electrical and electronic equipment 

(WEEE) have been established (Govindan et al. 2015; Linton et al. 2007; Mota et al. 2018). Additionally, 

public awareness has been shown to have a significant impact on big industry players which are being 

held responsible for practises and incidents occurring in their supply chains. Examples of this are well-

established companies such as Nike, H&M, Volkswagen, Apple, and Walmart (Mota et al. 2018).  

It is thus clear that industries must be capable of designing, planning and operating their entire supply 

chain while considering a sustainability path in a way that does not compromise the sustainability of the 

other players involved (Brandenburg et al. 2014; Mota et al. 2018; Seuring and Müller 2008). The main 

problem, however, is the inherent complexity, which can be even greater when incorporated in more 

demanding supply chain systems (e.g. closed-loop supply chain). Moreover, supply chain design and 

planning problems also involve a set of different strategic (long planning cycles for several years), 

tactical (shorter planning cycles) and operational (weekly planning cycles) decisions, which are highly 

affected by uncertainty. Examples of these are: network designing problems contemplating the number, 

capacity and location of facilities; decisions in the establishment of transportation links; flow of products 

between the installed entities so as to satisfy the clients’ needs; supplier selection; inventory planning; 

product allocation, recovery and development; and technologies’ choices (Barbosa-Póvoa et al. 2018; 

Govindan et al. 2015; Mota et al. 2018). Additionally, the participants of a supply chain face uncertainties 

regarding raw material supplies, products demands, and commodity prices and costs (Chen, Yuan, and 

Lee 2007). Likewise, the amount of both waste generated and CO2 emitted to the atmosphere, as well 

as the number of potential hazardous products created are strong sources of environmental uncertainty 

(Pishvaee, Razmi, and Torabi 2012; Pishvaee, Torabi, and Razmi 2012; Saffar, Hamed Shakouri, and 

Razmi 2015; Tsao et al. 2018). Apart from this, situations concerning the number of job opportunities 

and the average number of workdays lost due to the implementation of new technologies and/or work 

damages portray common uncertain social issues (Pishvaee, Razmi, et al. 2012; Tsao et al. 2018). 

Considering this, modelling uncertainty in sustainable supply chain systems is a challenging problem. 

Thus, to answer to this challenge, the use of Operational Research (OR) methods is a path to explore 

(Barbosa-Póvoa et al. 2018). Deterministic optimization is not the best-suited one to model uncertainty, 

given that these types of problems are formulated with known parameters, while real-world problems 

almost invariably include some uncertainties and difficulties in correctly estimating key parameters. 

For this reason, several methods to deal with uncertainty were discussed by Sahinidis (2004): 

stochastic programming where the uncertainty parameters are characterized as random variables with 

known probabilities, fuzzy programming which assumes that some variables are fuzzy numbers, and 

robust optimization. 

1.2. Dissertation’s Objectives 

The present dissertation’s goal is to contribute to the literature with the development and implementation 

of a model which will serve as a decision-supporting tool focused on the modelling of various forms of 

uncertainty commonly present upon the designing and planning of a sustainable supply chain. The 

current study is being developed under the scope of the m-SSChain (Managing Sustainable Supply 

Chain) project. 
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For this reason, the current dissertation targets the following intermediate objectives, which aim to 

support the model’s definition in future dissertation stages: 

▪ Describe the most commonly used methods to model uncertainty and respective features; 

▪ Perform a literature review on previous works focused on modelling uncertainty in sustainable 

supply chains and identify the research gaps in this field; 

▪ Define and formulate a comprehensive decision-support tool for the modelling of uncertainty in 

sustainable supply chains and apply it to an illustrative case-study; 

▪ Analyse and critically discuss the obtained results. 

1.3. Dissertation’s Structure & Methodology 

When assessing the work developed in the dissertation, and according to Figure 1, this is composed of 

seven distinctive stages, characterized below: 

 

Figure 1 - Dissertation's methodology steps 

Accordingly, each stage may be described as follows: 

i. Stage 1 – Problem Contextualization 

The first stage of the thesis aims at providing sufficient information about the problem being 

addressed. Thus, the sustainable supply chain field, along with its current challenges are 

identified. 

ii. Stage 2 – Problem Definition & Characterization 

The problem of modelling uncertainty in sustainable supply chains is defined and key 

considerations regarding how to address it are presented. Several optimization methods are 

identified and described, in order to characterize and support the objective of this study.  

iii. Stage 3 – Literature Review 

The third stage of the present work focuses on presenting a thorough literature review regarding 

the modelling of uncertainties in the supply chain network design, whether or not accounting for 

sustainability concerns, with the purpose of providing sufficient information regarding the 

advances being made in most recent years considering the uncertainty topic. Common literature 

considerations are identified and research gaps concerning sustainable supply chains under 

uncertainty exposed. Accordingly, the current challenges faced in this area are highlighted and 

possible research considerations presented.  

iv. Stage 4 – Model Definition & Conceptualization 

In this stage, the definition and conceptualization of the desired tools and methods to be applied 

in order to provide a solid and complete decision-support tool are provided. Hence, relevant 

literature studies are discussed and used as guidelines so as to present sufficient scientific and 

coherent information and level of detail. Thus, this research is based on the previously 
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highlighted challenges, namely: the modelling of uncertain parameters; the environmental 

sustainability pillar model incorporation; and, the modelling of social concerns.   

v. Stage 5 – Mathematical Model Formulation  

The fifth stage of the work methodology focuses on the formulation and development of the 

proposed stochastic dynamic mathematical model, where several parameters are considered 

uncertain, and thus provides a decision-support tool for the design and planning of sustainable 

supply chains.    

vi. Stage 6 – Model Validation & Results Analysis 

The formulated mathematical model is applied to a representative case-study of Calzedonia 

Group in order to be validated. Additionally, the obtained results are analysed and discussed, 

so as to understand the impact of each uncertain parameter considered in the overall network. 

Final recommendations are given.  

vii. Stage 7 – Final Discussion & Conclusion  

The final stage of the methodology considers the analysis of the work previously presented, 

where a critical discussion is given concerning the work developed in the dissertation. From 

there, future research topics are identified as interesting to be explored.  
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2. MODELLING UNCERTAINTY: METHODS & APPLICATIONS 

With the purpose of acquiring a more comprehensive knowledge on how to deal with uncertainty through 

Operations Research methods, and identifying the proper methodology to employ, this chapter analyses 

and reviews available literature about this topic. Thus, the most commonly used methodologies to model 

uncertainty are defined. The main advantages and limitations of each method are also given, as well as 

an overview on which types of uncertainties each model has been used for.  

This chapter is organized as follows. In section 2.1, the stochastic programming method is presented. 

Section 2.2 refers to the fuzzy programming approach. Section 2.3 focuses on robust optimization. 

Section 2.4 describes dynamic optimization. Section 2.5 describes cases where hybrid optimization can 

be applied. Lastly, in section 2.6, the chapter final remarks are stated. 

2.1. Stochastic Programming  

Unlike deterministic mathematical programming, where data are known numbers, in stochastic 

mathematical programming, these numbers may be unknown. Instead, a discrete or continuous 

probability distribution is given (based on historical data) or estimated (Liu and Sahinidis 1996; Sahinidis 

2004).   

Two types of stochastic programming are considered in this study: the recourse-based stochastic 

programming approach, and the probabilistic or chance-constraint stochastic programming approach. 

The former deals with decision variables organized into two sets, first-stage and second-stage variables, 

where the goal is to minimize the expected recourse costs. The latter focuses on the reliability of the 

system, that is, the system’s ability to meet feasibility in an uncertain environment, where the constraints 

to be optimized depend on certain probabilities. 

The most commonly cited stochastic approach is the standard two-stage approach, in which, and 

according to Sahinidis (2004), the decision variables of an optimization problem under uncertainty are 

partitioned into two sets. The first-stage variables (“here and now” decisions) are those that have to be 

decided before the actual realization of the uncertain parameters. Thus, once the decision-maker takes 

some action upon the first-stage, random events occur, affecting the outcome of the first-stage 

decisions. Subsequently, once the random events have presented themselves, further design or 

operational policy improvements can be made by selecting, at a certain cost, the values of the second-

stage or recourse, variables (“wait and see” decisions). The second-stage variables are interpreted as 

corrective measures or recourse against any infeasibilities arising due to a particular realization of 

uncertainty. The presence of uncertainty is reflected by the fact that both the second-stage decisions, 

as well as the second-stage costs are probabilistic in nature. The objective is, therefore, to choose the 

first-stage variables, which are deterministic, in a way that the sum of the first-stage costs and the 

expected value of the random second-stage costs is minimized, leading to an optimal solution that is 

feasible for all, or almost all, of the realizations of the uncertain parameters. Thus, the result of two-

stage programming models is a single first-stage policy followed by a collection of recourse decisions 

(a decision rule) that indicate which second-stage policy should be implemented in response to each 

realization of random outcome (Mitra et al. 2009; Sahinidis 2004). 
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As of the chance-constrained approach, it ensures that the probability of meeting a given constraint is 

above a certain level, i.e., it restricts the feasible region so that the confidence level of the solution is 

high. Despite being quite robust, the probabilistic approach is often difficult to solve due to several 

challenges in transforming the chance constraints into deterministic ones, so that the solution can be 

reached.  

The main advantage of stochastic programming methods is that it is mainly based on probabilistic terms, 

which are commonly known and applied concepts. Moreover, these approaches also allow decision-

makers to have a complete view of the effects of uncertainties and the relationships between uncertain 

inputs and resulting solutions. Nonetheless, when considering real-case scenarios, it is often difficult to 

build a probability distribution due to the lack of historical data for the uncertain parameters and/or the 

high cost for acquiring it. Furthermore, the further incompleteness or impreciseness of observed 

information (due to market turbulence, for instance) can lead to dual uncertainties of randomness and 

fuzziness, given that decision-makers express different subjective judgements upon a same problem 

(Li, Liu, and Huang 2014).  

Additionally, when there is a lack of historical data, specifically in the chance-constrained programming 

approach, the chance constraint can destroy the convexity properties and elevate the complexity of the 

original problem significantly. Besides, and as most recent works on supply chain network design under 

uncertainty model the uncertainty through the scenario-based stochastic programming approach, the 

great number of scenarios used in representing the uncertainty can lead to large-sized, computationally 

challenging problems (Janak, Lin, and Floudas 2007; Pishvaee, Rabbani, and Torabi 2011).  

Several authors apply stochastic programming to model various types of uncertainty. One example of 

this is Gupta and Maranas (2003), which applied the two-stage stochastic model and where the 

manufacturing decisions are modelled as “here and now” decisions, and the logistics decisions 

postponed in a “wait and see” mode to optimize in the face of uncertainty. Furthermore, Feitó-Cespón 

et al. (2017) presented a stochastic model aiming to redesign a sustainable supply chain and thus allow 

the recycling of certain products. Once solved, feasible results were obtained, where a cost reduction 

of 20.9% was achieved when compared to the already existing and deterministic supply chain. 

Nonetheless, and even though these authors claim to have satisfactory results in using this method, 

others faced some difficulties, making them change their course of action. Hence, Mitra et al. (2009), 

shows that if the problem of modelling demand uncertainty, machine uptime and various cost 

components, had been performed using a scenario-based two-stage stochastic programming approach 

considering just “5 scenarios for each of the 34 products for a planning horizon of 12 time periods”, the 

problem would have been too large to solve (534x12x12 scenarios). As a result, another widely used 

approach has been applied: the fuzzy mathematical programming approach, which is described in the 

following subsection.  

2.2. Fuzzy Programming  

Fuzzy programming is another method used to model under uncertainty. This approach can be applied 

when situations are not clearly defined, or an exact value is not critical to the problem. Thus, fuzzy 
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programming does not require an event to either be black or white (crisp set1), but instead, have a range 

of grey values between two given extremes, thus increasing the number of possible applications in real-

case scenarios. 

In a fuzzy-based approach, random parameters are considered fuzzy (uncertain) numbers and 

constraints are treated as fuzzy sets, that is, sets whose elements have degrees of membership. 

Moreover, some constraint violation is allowed and the degree of satisfaction of a given constraint is 

defined as the membership function of the constraint (Sahinidis 2004). As an example, one can consider 

a linear constraint 𝑎𝑡𝓍 ≤ β in terms of the decision vector 𝓍 and assume that the random right-hand side 

𝛽 can take values in the range from 𝑏 to 𝑏 + ∆𝑏, with ∆𝑏 ≥  0. Then, the membership function (u) is 

given by a linear function that defines the degree of satisfaction of a constraint as: 

𝑢(𝑥) =

{
 

 
1,               𝑖𝑓 𝑎𝑡  ≤ 𝑏,

1 −  
𝑎𝑡𝑥 −  𝑏

∆𝑏
,               𝑖𝑓 𝑏 < 𝑎𝑡𝑥 ≤  𝑏 +  ∆𝑏

   0,                            𝑖𝑓 𝑏 +  ∆𝑏 <  𝑎𝑡𝑥 

 

           (1) 

Although other types of membership functions are also possible, the above is typically used. Objective 

functions are treated as constraints with the lower and upper bounds of these defining the decision 

maker’s expectations (Giannoccaro, Pontrandolfo, and Scozzi 2003; Sahinidis 2004).  

There are two main types of fuzzy programming: flexible programming and possibilistic programming. 

Flexible programming deals with right-hand side uncertainties and can be applied when there is 

uncertainty regarding the exact values of the coefficients. Besides, some constraints violation is 

acceptable within a certain range. As for the possibilistic programming, it recognizes uncertainties in the 

objective function coefficients as well as in the constraint coefficients (Li et al. 2014; Sahinidis 2004). In 

both types of fuzzy programming, the membership function is used to represent the constraints 

satisfaction degree, the decision-maker’s expectations about the objective function level, and the range 

of coefficients’ uncertainty (Sahinidis 2004). 

Unlike crisp models, fuzzy systems, combined with an interactive solution process, do not require a 

collection of extensive data, solving the often-existing information dilemma2. Consequently, the first step 

is to model the fuzzy system, only using easily achieved information which does not incur in high 

expenses. Accordingly, and based on the solution of the fuzzy model, the decision-maker must then 

decide which additional information has to be collected and processed. The data representation and the 

solution can thus be improved stepwise by gathering objective-oriented additional information, with 

reference to the cost-benefit relation. Since the collection of input data is cut back, its incurring costs 

can be considerably reduced (Rommelfanger 2004).  

One key aspect of the fuzzy sets’ theory, developed in 1965 by Zadeh, is that it offers a practical way to 

model vague and qualitative data. Hence, and instead of replacing vague data by “average data”, they 

are modelled by fuzzy numbers and fuzzy intervals, as precisely as a decision maker will be able to 

explain and describe them (Rommelfanger 2004). This can thus be applied to various imprecise 

linguistic terms which arise from managerial subjective judgement and experience, such as: “customer 

 
1 A given element can either belong or not to a given set, not allowing it to have a partly behaviour  
2 Lack of historical data and high costs for acquiring it 
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demand is about dm, but definitely not less than dl and not greater than du”; or “an external supplier is 

reliable”, where no exact value of how reliable the supplier is was given. Hence, and due to their 

conceptual and computational simplicity, fuzzy sets can represent approximate quantifiers that 

correspond to natural language expressions and thus model subjective imaginations of the decision 

maker as precisely as he will be able to describe it, allowing for an adequate mapping of real problems 

(Giannoccaro et al. 2003; Petrovic, Roy, and Petrovic 1998).  

Moreover, fuzzy models allow for the mixed integer programming problems to be solved relatively easily. 

Comparing these with classical linear programming models, where integer solutions nearby the optimum 

solution are often not feasible, in the case of fuzzy models, the right-hand sides are not strong (crisp) 

boundaries. Hence, fuzzy models also admit most of the integer solutions which are nearby the optimum 

solution. The decision-maker can thus choose one of the neighbour solutions, in which the advantage 

of a higher objective value has to be weighed against the disadvantages caused by disregarding the 

right-hand side of the restrictions (Rommelfanger 2004). 

Several authors apply fuzzy mathematical programming to model numerous forms of uncertainty, such 

as: (forecasted) demand uncertainty (Aliev et al. 2007; Chen and Lee 2004; Chen, Wang, and Lee 2003; 

Giannoccaro et al. 2003; Petrovic et al. 1998; Tsao et al. 2018), (raw material) supply uncertainty (Chen 

et al. 2007), product prices uncertainty in both supply and demand points (Chen and Lee 2004), 

inventory costs uncertainty (Giannoccaro et al. 2003), logistics and production uncertainties (Saffar et 

al. 2015), environmental and social uncertainties (Li et al. 2014; Saffar et al. 2015; Tsao et al. 2018), 

etc. Besides, fuzzy interactive methods have been widely used to solve problems related to green supply 

chain, closed-loop supply chain, and reversed-logistics network design (Tsao et al. 2018). 

Among these authors, several reasons are given as to why this approach is being used. The main motive 

is its capability to estimate trough possibility rather than probability. Even though probability would be 

desirable, several situations can only be estimated through possibility, due to the ambiguity of the 

available information (Giannoccaro et al. 2003). Besides, it is also supported that the fuzzy approach 

does not allow the final deterministic equivalent formulation of the uncertain model to blow up in size 

with the increase in the number of uncertain parameters (Mitra et al. 2009). 

Furthermore, and according to Giannoccaro et al. (2003), “fuzzy set theory is also used to better model 

the uncertainty associated to holding and backorder costs by simply using linguistic expressions”. The 

author then continues to explain that in cases where managers must estimate costs related to the 

expected market demand, they find it difficult to do so through crisp numbers because these values 

mostly depend on factors that can be hardly quantified properly. Thus, “more reliable cost values can 

be obtained by modelling them through fuzzy sets and using fuzzy operators where necessary”. 

As of Liang (2006), in which distribution planning decision problems are being tackled, fuzzy set theory 

is being implemented despite the objective function and model inputs being generally assumed to be 

deterministic/crisp, in order to provide higher efficiency and flexibility. This approach is thus considered 

given that in most of real-world problems, environment coefficients and model parameters, such as 

available supply, forecast demand and related cost/time coefficients, are frequently imprecise/fuzzy 

because some information is incomplete and/or unavailable over the planning horizon.   
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It is also supported that the application of fuzzy logic can provide two significant advantages for 

sustainable supply chains. Firstly, it allows the construction of compromises between conflicting 

objectives usually present, by considering an overall satisfaction degree as trade-off between several 

objectives and constraints. Secondly, intersection of fuzzy constraints and overall objectives can be 

smoother (less cutting), increasing the chance to get a better solution within the overlapping areas of 

constraints and objectives (Aliev et al. 2007). 

Crisp and fuzzy methods have also been compared in Aliev et al. (2007), where it is showed that the 

fuzzy model usually gives more realistic solutions in cases when the actual demand declines from 

forecasted values or the capacities decrease over the planning horizon. Nonetheless, the fuzzy method 

approach still lacks in its inability to represent the exact nature of the uncertainty, leading to results that 

could depend on the fuzzification3 approach (Mitra et al. 2009). 

2.3. Robust Optimization 

Robust optimization is another approach used to modelling uncertainty in optimization problems. Hence, 

this method provides a framework capable of handling the parameters uncertainty in such a way that it 

is able to immunize the optimal solution for any realization of the uncertainty in a given bounded 

uncertainty set. Even though this approach also needs a priori knowledge, it does not require the actual 

distribution, but only the relevant distribution, leading to a much easier process (Pishvaee et al. 2011). 

The main purpose of the model is to find a solution which is feasible (for all data) and optimal, that is, to 

always satisfy the constraints, despite parametric uncertainties. 

Depending on the optimization problem, and thus the structure of the uncertainty set, there can be 

several robust approaches. According to Drahansky et al. (2016), several concepts of robustness can 

be found, where the first is stricter and the others represent several ways of relaxing the former. Thus, 

these methods are:  

i. strict robustness, mainly used in critical systems where a failure is not tolerable, and where it 

is considered that all scenarios may occur and thus have an important criticality;  

ii. cardinality constrained robustness, which assumes the unlikelihood that all uncertainty 

parameters change simultaneously when analysing the worst-case scenario, hence varying only 

some in order to restrict the space of uncertainty and consequently relax the strict robustness; 

iii. adjustable robustness, where the space of uncertainty of strict robustness is divided into 

groups of variables; 

iv. lightweight robustness, where, instead of reducing the space of uncertainty, there is a 

constraints relaxation in favour of the solution’s quality; 

v. regret robustness, which relaxes the problem through the objective function;  

vi. recoverable robustness, which uses the concept of recovery algorithm and, as in adjustable 

robustness, provides a two-stage solution. 

Robust optimization is commonly used to address uncertainties in investment portfolio selection and is 

beginning to gain more attention in engineering research such as production scheduling, resource 

 
3 Process of changing a real scalar value into a fuzzy value through membership functions 
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allocation, project management, supply chain planning, and capacity expansion (Janak et al. 2007). This 

increasing interest in robust optimization is a consequence of being a tailored approach to the available 

information, relatively easy to understand intuitively and highly useful in practise (Gorissen, Yanikoğlu, 

and den Hertog 2015). Moreover, this method also leads to a reduction in computational costs and 

combines computational tractability with the structural properties of the optimal policy (Bertsimas and 

Thiele 2019; Gorissen et al. 2015; Janak et al. 2007).  

Furthermore, and as the robust optimization approach focuses on the worst-case, if the solution is 

efficient for this scenario, it is thus efficient for every other possible outcome. However, because it is 

intrinsically a worst-case approach, feasibility often comes at a cost of performance and generally leads 

to overconservative solutions (Bertsimas and Thiele 2019). One example of this is Pishvaee et al. 

(2011), where the robust optimization approach is applied to determine the number of facilities, as well 

as its locations, to satisfy the returns in the worst-case scenario. Consequently, more facilities, or 

facilities with higher capacities have been opened when using this approach instead of the deterministic 

model. In other words, the robust model resulted in a more decentralized network structure, while the 

deterministic model obtained more efficient solutions for nominal data. Nonetheless, the latter model 

also resulted in infeasible solutions for the most of other realizations, concluding that the robust model 

for high uncertainty levels is quite acceptable in these cases. 

Several other authors apply robust optimization to model numerous forms of uncertainty. Examples of 

this are: closed-loop supply chain uncertainties concerning both the type and quantity of returned 

products, and the transportation costs, (Pishvaee et al. 2011), demand uncertainties (Bertsimas and 

Thiele 2019), scheduling uncertainties (Janak et al. 2007; Lin, Janak, and Floudas 2004), vehicle routing 

uncertainties (Sungur, Ordóñez, and Dessouky 2008; Tajik et al. 2014), distributed energy systems 

uncertainties (Akbari et al. 2014), wind power uncertainties (Martinez-Mares and Fuerte-Esquivel 2013), 

surgery duration uncertainties (Marques and Captivo 2017), and supply and demand uncertainties 

(Miodrag Belosevic 2014). 

Considering Pishvaee et al. (2011), a robust strategy has been seen as a proper method capable of 

handling higher uncertainty levels. By comparing such method with the determinist approach, the 

authors have concluded that the gap between the two approaches with respect to the performance 

measures widens as the problem size and uncertainty level increase, leading to believe that the robust 

approach appears to be capable of dealing with large-sized problems.  

2.3.1. Adaptive Robust Optimization 

The adaptive robust optimization approach has been proposed with the purpose of mitigating the 

conservatism present in the above discussed traditional version of static robust optimization method. 

Hence, instead of optimizing all decision variables solely in the here-and-now mode, this new approach 

incorporates two stages of decision, by using the wait-and-see mode, with the intent of reaching the 

desirable goal, while anticipating the worst-case materialization of the uncertain parameters within an 

uncertainty set (Drahansky et al. 2016; Shi and You 2015; Zhao, Ning, and You 2019).  

When compared with the conventional stochastic programming approach, the adaptive robust 

optimization model is more practical, given that it only requires a deterministic uncertainty set, rather 
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than a hard-to-obtain probability distribution on the uncertain data (Bertsimas et al. 2013). Additionally, 

and according to Shi and You (2015), in the “two-stage stochastic programming, the second-stage 

decisions are made specifically for each corresponding scenario or possible realization of uncertainty”. 

Nonetheless, in the two-stage adaptive robust optimization, “second-stage decisions are made to hedge 

against the worst-case which is confined by the budgets of uncertainty and the uncertainty set”.  

The two-stage adaptive robust optimization approach has been widely applied to decision-making 

problems under uncertainty in several areas, such as: unit commitment for power systems; network flow 

optimization; and robust transportation problems (Shi and You 2015). In addition to this, Shi and You 

(2015) have proposed a two-stage adaptive robust optimization model which deals with the production 

scheduling problem for batch manufacturing processes facing uncertainty. Hence, decisions involving 

unit assignment, production sequence, and resource allocation are made here-and-now and so their 

corresponding decision variables are treated as first-stage variables. As of the remaining decision 

variables, such as start and end times, batch sizes, and allocated resources, these are determined in a 

wait-and-see mode after the realization of uncertain parameters and thus are second-stage variables. 

Lastly, and by analysing the obtained results, it is clear that, even though the deterministic model 

presented the most optimistic outcomes and returned the highest profit, it failed to deliver all-feasible 

solutions for scheduling under uncertain parameters. Moreover, and considering the conventional robust 

optimization technique, this led to conservative results and a lowest profit. Finally, the two-stage 

adaptive robust optimization approach resulted in an intermediate profit and returned a robust production 

schedule hedged against uncertainty. In conclusion, and according to the authors, this strategy can help 

increase scheduling flexibility and improve overall performance of the manufacturing system. 

The work developed by Bertsimas et al. (2013) is another example of a proposed two-stage adaptive 

robust model. In this study, the focus is on both unit commitment, one of the most critical tasks in electric 

power system operations, and on the impact of a dramatical uncertainty increase in supply and demand 

due to the integration of variable generation resources (such as wind power and price responsive 

demand). Here, the model’s first-stage aims at finding an optimal commitment decision, while its second-

stage is focused on finding the worst-case dispatch cost under a fixed commitment solution. Afterwards, 

and as final remarks, the authors claim that the used method presents a better economic efficiency of 

the robust approach by having a lower cost average through the proper adjustment of the budget level 

of the uncertainty set. Moreover, it is also stated that the adaptive robust solution can reduce the volatility 

of the total costs significantly, as well as the inherent penalty costs. Finally, the authors also defend the 

approach’s capability of being more robust to different probability distributions of load, as well as its 

capacity of amplifying its own advantages when the level of load variation is higher.  

2.4. Dynamic Optimization 

Generally speaking, optimization problems can be divided into two categories: static optimization 

problems, and dynamic optimization problems (Fu et al. 2014). Thus, while static optimization methods 

concentrate on reaching the optimal choice at a single point in time, dynamic approaches involve 

optimization over time, where the focus is on maximizing or minimizing the costs/benefits of a given 

objective function over a period of time. Moreover, in dynamic optimization problems, the decision-maker 
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is responsible of making multiple decisions over time. Besides, the approach’s overall performance 

depends on all decisions made sequentially during a given time interval, where previous decisions may 

have an impact on later decision-making. (Fu et al. 2014).  

Furthermore, in dynamic programming optimization problems, also known as multi-stage programming 

optimization problems, the objective functions show a sequential structure (Hinderer, Rieder, and 

Stieglitz 2016). Hence, and according to Iyengar (2005), dynamic programming is the “mathematical 

framework that allows the decision maker to efficiently compute a good overall strategy by succinctly 

encoding the evolving information state”. Thus, decisions are made in stages where each, besides 

providing an immediate reward, affects the future rewards and hence the context of future decisions 

(Iyengar 2005). 

Given its structure, applying dynamic optimization to real-world situations may encounter several 

difficulties. One example is the considerable computational burden (also known as curse of 

dimensionality) of having a large number of states and actions that must be known in order to compute 

the optimal action in any given state. Moreover, other issues relate to the lack of proper awareness of 

the theory’s potentials, the requirement of rather complexed models, and the possible lack of accurate 

data (Hinderer et al. 2016; Iyengar 2005). Nonetheless, and considering its characteristics, several 

authors have been combining this technique with other well-known ones, such as the stochastic and 

robust optimization methods, as discussed in the following subsubsections.  

2.4.1. Stochastic Dynamic Optimization 

While dynamic programming may be viewed as a general method aimed at solving multi-stage 

optimization problems, stochastic dynamic programming is seen similarly, but with its focus on solving 

stochastic multi-stage optimization problems. Moreover, a stochastic multi-stage optimization problem 

concerns cases where one or several parameters in the problem are modelled as stochastic variables 

or processes (Haugen 2016). Hence, with flexible state-dependent decision-making and a look-ahead 

capability to take future recourse actions into account, this approach balances current rewards with 

future option values. The principle of the stochastic dynamic programming approach is thus based on a 

recursive decomposition of a multi-stage problem into simpler sub-problems (characteristics of dynamic 

programming) that, once solved, are assembled to provide an overall solution (Schön and König 2018). 

Concerning the available literature, Schön and König (2018) developed a multi-stage stochastic dynamic 

programming model focusing on delay management of a single train line, where the goal is to minimize 

the total delayed experience felt by passengers at their final destination by recursively solving Bellman 

equations4. Since railway delay management considers whether a train should wait for a delayed feeder 

train, the given model focuses on making wait-depart decisions in the presence of uncertain future 

delays. Here, the approach taken explicitly accounts for potential recourse actions at later stations in a 

look-ahead manner when making the decision in the current stage, and, according to the authors’ 

 
4 Necessary condition for optimality associated with dynamic programming, which breaks the problem into a 

sequence of simpler sub-problems  
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numerical experiments, the proposed approach resulted in decisions expected to achieve lower overall 

delays.  

Another example of this is the work developed by Li et al. (2009), based on production planning and 

inventory control, which, besides being a critical research point for re-manufacturing systems, often 

faces a great deal of uncertainty and complexity. Therefore, the authors have proposed a stochastic 

dynamic programming model to study the production planning, i.e. the dynamic lot sizing problem, of re-

manufacturing systems, where both the demand and return amounts are stochastic over a finite planning 

horizon. Here, the state variable is defined by the recoverable inventory and the serviceable inventory 

of re-manufactured products, whereas the decision variable is defined by the number of re-manufactured 

products per period. The Bellman equation is constructed in order to minimize the total expected cost, 

including the re-manufacturing cost, the holding cost for returns and re-manufactured products, and the 

backlog cost. Finally, the optimal production plan of the re-manufacturing system over a finite planning 

horizon is said to be obtained with the policy iteration method with effective results.   

Multi-stage stochastic programming is also widely used in the formulation and solution of financial 

problems (Consigli and Dempster 1998). One example of this is the multi-stage stochastic programming 

model for international portfolio management in a dynamic setting developed by Topaloglou, Vladimirou, 

and Zenios (2008), where uncertainty relates to asset prices and exchange rates in terms of scenario 

trees that reflect the empirical distributions implied by market data. According to the author’s, the choice 

of this approach concerns its capability of helping decision-makers gain useful insights and adopt more 

effective decisions. For instance, by using this method, they shape decisions based on longer-term 

potential benefits and thus avoid myopic reactions to short-term market movements that may prove 

risky. Moreover, they determine appropriate dynamic recourse (contingency) decisions under changing 

economic conditions represented by scenario trees. Hence, interrelated decisions present in the model, 

which are traditionally considered separately, are cast as a unified and flexible framework that 

outperforms single-stage models.  

2.4.2. Robust Dynamic Optimization 

Similarly to the stochastic dynamic optimization approach, and according to the decision-maker context, 

robust methods can be divided into two categories: single-stage and multi-stage (Gabrel et al. 2014). 

Accordingly, in the multi-stage context, or dynamic decision-making, the information is revealed in 

subsequent stages. Moreover, Weinmann (1991) also defends that “robustness is the property of 

dynamic systems to tolerate variations of parts of the system without exceeding predetermined tolerance 

bounds in the vicinity of some nominal dynamic behaviour”.  

Given that robust dynamic optimization is a relatively recent approach to model uncertainty, few authors 

have explored this method. Nonetheless, and according to Puschke et al. (2018)’s studies, the worst-

case formulations can be expressed as semi-infinite programs (SIP), despite the fact that connecting 

uncertain dynamic optimization problems and SIPs is somehow atypical. Besides, and according to 

Vallerio et al. (2016), a probabilistic framework can be used to formulate an approximate but 

computationally tractable solution approach for robust dynamic optimization problems involving 

expected value dynamic optimization and additional chance constraints. The approach is thus based on 
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the sigma point method (SP) which allows the accurate approximation of the probability distribution 

through any nonlinear mapping via a sampling technique.  

2.5. Hybrid Optimization 

In hybrid optimization, more than one method is used and so the desired features of at least two 

approaches are combined in order to reach overall improvements. Thus, several combinations are 

possible, and hence, multiple drawbacks mitigated.  

Several authors have been focusing on hybrid optimization approaches. One example is the study 

performed by Li et al. (2014), where a hybrid fuzzy-stochastic programming method has been developed 

for planning water trading under uncertainties of randomness and fuzziness. Therefore, this method can 

simultaneously deal with recourse water allocation problems generated by randomness in water 

availability, and tackle uncertainties expressed as fuzzy sets in the trading system. Moreover, and 

according to the authors, the developed method provided two main benefits that would be difficult to 

achieve if any other approach had been employed. Firstly, this method allows to incorporate pre-

regulated water-allocation policies directly into the modelling formulation, such that an effective linkage 

between resources-allocation regulations and economic implications/penalties caused by improper 

policies due to uncertainty existence can be provided. Secondly, multiple uncertainties represented as 

fuzzy sets, random variables, and their combinations can be directly communicated into the optimization 

process, leading to enhanced system robustness for uncertainty reflection (Li et al. 2014).  

Other authors have benefited from aligning the stochastic and fuzzy optimization methods. Hence, in 

Chen et al. (2007), the simultaneous optimization of multiple conflict objectives problem in a typical 

supply chain network with market demand uncertainties is investigated. Here, demand uncertainty is 

modelled as discrete scenarios with given probabilities for distinctive expected outcomes. Furthermore, 

and in order to find the degree of satisfaction of the multiple objectives, the linear increasing membership 

function is used. In turn, the final decision is acquired by fuzzy aggregation of the fuzzy goals, and the 

best compromised solution can be derived by maximizing the overall degree of satisfaction for the 

decision. Finally, when applying the model to the given case-study, it becomes clear that this approach 

can provide a compensatory solution for the multiple conflictive objectives problem in a supply chain 

network with demand uncertainties.  

On another thought, the work developed by Bozorgi-Amiri, Jabalameli, and Mirzapour Al-e-Hashem 

(2013) is based on the combination of stochastic and robust optimization. Here, the authors studied the 

disaster relief logistics under uncertainty, where supply, demand, and costs of procurement and 

transportation are seen as uncertain parameters. Moreover, both the incapability of accurately knowing 

the demand locations, and the possibility of having some pre-positioned supplies partially destroyed by 

the disaster are also considered as uncertain, which was coped with by using a scenario-based 

approach. Furthermore, and in order to develop a robust model, two additional terms were added to the 

first objective: cost variability and penalty of infeasibility. As a result, the purpose of this model is not 

only to minimize the sum of the expected value and the variance of the total cost of the relief chain while 

penalizing the solution’s infeasibility due to parameter uncertainty, but also to maximize the affected 

areas’ satisfaction levels through minimizing the sum of the maximum shortages in the affected areas. 
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This was further applied to a case-study concerning the disaster planning for earthquake scenarios in a 

region of Iran. 

When looking at the combination of both fuzzy and robust optimization approaches, one can state the 

work developed by Nie et al. (2007), where a model is developed and applied to the planning of solid 

waste management systems under uncertainty. Considering this, the model parameters are represented 

as interval numbers and/or fuzzy membership functions so that the uncertainties can be directly 

communicated into the optimization process and resulting solution. Furthermore, highly uncertain 

information for the lower and upper bounds of the interval parameters that exist due to the complexity 

of the real world were effectively handled by introducing the concept of fuzzy boundary interval. 

Complexities and uncertainties are thus explicitly addressed without unrealistic simplifications, and the 

obtained solutions exposed increased stability and enhanced robustness. Finally, the obtained results 

suggest that the proposed methodology is applicable to practical problems associated with highly 

complex and uncertain information. Nevertheless, the authors also state that this method can be further 

improved by incorporating methods of stochastic analysis.  

Thus, and considering a scenario where the three methods, stochastic, fuzzy and robust, have been 

applied, it is vital to emphasise the work developed by Zhang, Huang, and Nie (2009). Here, a robust 

chance-constrained fuzzy possibilistic programming model has been developed and applied to a case-

study of water quality management within an agricultural system under uncertainty. The proposed model 

improved upon the usage of the methods individually, by allowing fuzzy and probabilistic information in 

the model to be effectively incorporated within the optimization framework. Moreover, the preference 

form decision-makers is effectively reflected through specifying the certainty degree of the imprecise 

objective function, and the model enhances the robustness of the optimization process and resulting 

solutions by delimiting the decision space through dimensional enlargement of fuzzy constraints. 

Consequently, the uncertainties are directly communicated into both the optimization process and the 

resulting solutions, such that the generated decision schemes for agricultural activities are effectively 

capable of reflecting the complex system features under uncertainty. Finally, the case-study results not 

only indicate that useful information for providing feasible decision schemes for different agricultural 

activities under diverse scenarios can be obtained through the proposed model, but also that the 

developed approach is applicable to several practical problems where fuzzy and probabilistic distribution 

information simultaneously exist. 

Moreover, Li et al. (2006) focus on the development of a hybrid two-stage fuzzy-stochastic robust 

programming model, with the purpose of applying it into the planning of an air-quality management 

system. Here, uncertain parameters are expressed as probability density and/or fuzzy membership 

functions, such that robustness of the optimization efforts could be enhanced. Besides, economic 

penalties as corrective measures against any infeasibilities arising from the uncertainties are 

considered, and the linkage to predefined policies determined by authorities that must be respected 

when a modelling effort is undertaken was provided by this approach. Furthermore, in the solution 

process, the proposed model is capable of delimiting the fuzzy decision space into a more robust one 

by specifying the uncertainties through dimensional enlargement of its original fuzzy constraints. Finally, 

the obtained results from applying this method indicate that useful solutions for planning regional air 



 

16 

 

quality management practises have been generated and reflect complex trade-offs between 

environmental and economic considerations. Thus said, the willingness to pay a high operating cost will 

guarantee meeting environmental objectives, however, a strong desire to acquire a low operating cost 

will run into a high penalty for violating the environmental objective.  

Finally, it is also relevant to emphasise the work developed by Farrokh et al. (2018), where the focus is 

on the closed-loop supply chain network design problem under hybrid uncertainty, namely in the 

processes of recycling and disposing products. The goal is thus to optimize the configuration of supply 

chain network with respect to both disruption and operational risks. Here, two sources of uncertainty for 

most parameters were treated, hence requiring fortifying the robustness of the decision. Therefore, while 

the first source is that some uncertain parameters may be based on the future scenarios which are 

considered according to the probability of their occurrence, the second source is that values of these 

parameters in each scenario are usually imprecise and can be specified by possibilist distributions. 

Moreover, and by using the simulation method, the authors compared the proposed robust model in 

terms of mean costs and total variability with the models developed by Mulvey and Vanderbei (1995) 

and Pishvaee, Razmi, and Torabi (2012), which can either control the scenario variability or the 

possibilistic variability, contrasting with the model proposed by Farrokh et al. (2018), which can control 

both variabilities. As a result, the findings indicate the superiority of the proposed model over the two 

others in decreasing the total variability as a measure of the optimal robustness, leading to the 

conclusion that it would be more suitable for most managers to control both disruption and operational 

risks by considering the scenario variability and the possibilistic variability simultaneously.   

2.6. Chapter Final Remarks  

The inevitable uncertainty in supply chain systems can be modelled through several optimization 

methods, which can either focus on static or dynamic optimization problems. Some examples of such 

approaches are: (i) stochastic programming method; (ii) fuzzy programming method; (iii) robust 

optimization method; and (iv) dynamic optimization method. Moreover, and despite having the same 

purpose, these approaches work in distinctive ways, and thus several differences separate them. The 

main aspects, as well as main advantages and drawbacks of each of these methods are summarized 

in Figure 2.  
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Figure 2 - Optimization methods overview 

Additionally, many authors have explored the possibility of combining at least two of these methods and 

hence produce a hybrid approach. As a result more robust techniques are applied, and drawbacks 

mitigated through the combination of the best characteristics of each approach. Thus, and from the 

possible combinations, special emphasis should be given to the situation where the stochastic, fuzzy 

and robust optimization methods are used together. On that note, the work developed by Farrokh et al. 

(2018), should be given further attention, since its main focus is by some means related to the purpose 

of this study. Here, the authors develop and apply a model that considers the effects of uncertainty in a 

closed-loop supply chain, where economic and environmental concerns are taken into consideration. 

Moreover, the model’s validity is also provided by a wise comparison with two other models that do not 

apply all three methods, leading to believe that better results can be achieved when considering a hybrid 

approach of this nature in the modelling of uncertainty in supply chain systems.  
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3. MODELLING UNCERTAINTY IN SUSTAINABLE SUPPLY CHAINS 

The present chapter performs a comprehensive literature review on the usage of optimization methods 

to properly model various supply chain uncertainties, based on the methodology presented by Tranfield 

et al. (2003). Hence, and in order to present a more completed and thorough analysis, relevant papers 

considering supply chain network design under uncertainty, with and without the sustainability focus, 

have been accounted for, so as to provide sufficient background on the subject of uncertainty and how 

it may be incorporated and modelled in a (sustainable) supply chain. 

This chapter is organized as follows. Section 3.1 describes the scope of this analysis and provides a 

general description of the collected materials. Section 3.2 focuses on the categorization of the obtained 

sample of papers. Section 3.3 provides a sample assessment, where a conceptual map is presented. 

Lastly, in section 3.4, the chapter final remarks and the identified challenges in the field are stated. 

3.1. Scope and Sample Description  

The main purpose of this analysis is to provide a literature review on the studies and optimization 

methods that have been developed for designing supply chain networks under uncertainty, in order to 

obtain further insights on how to properly model uncertainty in sustainable supply chains. Hence, key 

research questions aiming to be answered with this literature review have been developed as follows: 

 

Q1) What type of parameters are usually considered to be uncertain when considering supply chains? 

Q2) What optimization methods have been predominantly explored when addressing uncertainty in 

supply chains?  

Q3) Which optimization method studied has predominately been applied to model each type of uncertain 

parameters considered? 

Q4) What decision levels (strategic, tactical, or operational) have been addressed when applying the 

discussed methods to model uncertainty in supply chains? 

Q5) What sustainability pillars (economic, environmental, and social) have been explored in the 

modelling of uncertainty in sustainable supply chains? 

 

With this regard, this analysis focuses, not only on bringing new relevant data to the main findings of the 

work already developed by Govindan et al. (2017) concerning the supply chain network design under 

uncertainty, but also on further exploring the uncertainty topic incorporation into the sustainable supply 

chain network design and planning. Hence, key articles have been selected for this literature review that 

account for both sustainable and non-sustainable supply chains under uncertainty and thus provide a 

valid awareness on the work being developed on this subject.  

Therefore, and in order to conduct the mentioned analysis, a literature review has been conducted using 

both Thomson Web of Knowledge and Science Direct databases, where only articles published in peer-

reviewed journals and written in English have been considered. Moreover, the study has involved two 

main researches: one based on articles from 2016 up to 2020 whose focus is on providing an update 

on the work developed by Govindan et al. (2017) on supply chains under uncertainty, and another one 
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highlighting the achieved studies since 2000 until 2020 on sustainable supply chains under uncertainty, 

a key issue for the purpose on the present thesis. These analyses are thus performed using the 

combination of the following sets of keywords, both compatible with the research conducted by 

Govindan et al. (2017), so that reliable conclusions can be done: (1) “supply chain”, “supply network”, 

“distribution network”, “logistic”, “uncertainty”, “stochastic”, “fuzzy”, “robust”, and “dynamic”; and, (2) 

“sustainable”, “supply chain”, ”closed-loop”, “supply network”, “distribution network”, “logistic”, 

“uncertainty”, “stochastic”, “fuzzy”, “robust”, and “dynamic”. Finally, and considering scenario (2), all 

papers concerning sustainable supply chains that do not model explicitly environmental or social 

concerns have been excluded, leaving only papers where at least two pillars of sustainability have been 

accounted for.  

Using the aforementioned research description, a total of 72 extra papers (provided in Appendix A) has 

been identified and further explored along with the analysis developed by Govindan et al. (2017), which, 

on its own, analysed a total of 170 papers. The distribution of the overall sample of papers in terms of 

publication date is given in Figure 3, where, and according to Govindan et al. (2017), it is clear that more 

than 50% of the papers concerning supply chain network design (SCND) have been published since 

2012. Moreover, it is also clear that, prior to 2010, little relevant work has been developed in the field of 

sustainable supply chain network design (SSCND). Hence, and given the obtained results, it is plausible 

to state that several developments have been made in the area of optimization, with a fairly recent trend 

on the incorporation of sustainability concerns into the design and planning of supply chains under 

uncertainty.  

 

Figure 3 - Number of papers published per year since 2000 (adapted from Govindan et al. 2017) 

Additionally, and according to Govindan et al. (2017)’s analysis, the European Journal of Operational 

Research, the Transportation Research Part E: Logistics and Transportation Review, and the 

International Journal of Production Research have greatly contributed to the literature in the modelling 

of uncertainty in supply chains. Hereafter, the additional research has considered, not only the above-

mentioned journals, but also other reputable contributors, such as: International Journal of Production 

Economics, Journal of Cleaner Production, and Omega. Therefore, and according to Figure 4, it 

becomes clear that the European Journal of Operational Research has had a large contribution to the 

supply chain network design under uncertainty, whereas the Journal of Cleaner Production represents 

the higher contribution in the modelling of uncertainty in supply chains with a sustainability focus. 
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Figure 4 - Share of international journals with the highest contributions in publishing the analysed papers (adapted from 
Govindan et al. 2017) 

Finally, and even though there is no information regarding who has been exploring the optimization 

methods in the design of supply chains under uncertainty in Govinan et al. (2017)’s work, when 

analysing the countries of origin of the corresponding authors in the remaining part of the sample of 

papers, China, Canada and the USA represent the countries with the highest number of contributing 

papers into the present analysis, where the large majority concerns the modelling of uncertainty in 

sustainable supply chains. Other relevant contributors are European countries, such as France, 

Germany, Norway, and Italy.  

3.2. Sample Categorization 

The present subchapter aims to categorize the several papers by considering key aspects of the 

developed researches. This categorization is a crucial process that requires special attention due to the 

variety of decisions involved in supply chain management. Thus, and by answering the questions Q1 – 

Q5 presented in 3.1, crucial information is presented and discussed through Figures 5 – 14, namely: 

uncertain parameters, optimization methods, sustainability pillars, and decisions levels considered. 

Question Q1’s purpose is to understand what are the main uncertainty aspects being considered when 

designing a supply chain network of any kind, forward, reverse, or closed-loop. Hence, and according 

to Govindan et al. (2017)’s work, one can conclude that demand is the uncertain parameter with the  

highest frequency (80%) in the forward logistics network. Following this is the numerous costs of 

activities, such as transportation and production (30%), as well as capacities of network 

facilities/transportation links (about 20%), and supply quantities for network facilities (around 10%). 

Moreover, and when considering the uncertain parameters frequency in the reverse logistics network, 

returned quantities presents the highest value (more than 80%), followed by costs of various activities, 

such as transportation and production (more than 40%), capacities of network facilities/transportation 

links (30%), and demand for reverse logistics outputs (about 20%).  

Additionally, and when analysing the sample of 72 papers, the main uncertainty aspects being 

considered are represented in Figures 5 and 6. Hence, and from Figure 5, it is possible to conclude that 

demand is the parameter with the highest frequency (44%) in the SCND scenario, followed by supply 

(11%) and capacities of network facilities/transportation links (9%). Figure 6, on the other hand, 

represents the frequency of the main uncertain parameters treated in the scenario where the 

sustainability pillars are accounted for. Hence, it is clear that demand continues to be the uncertain 
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parameters with the highest frequency (29%). Following that is both environmental and social impacts 

uncertainties, with a frequency of 16% and 14%, respectively. Concerns related to products returns, 

have also been considered, namely their rate of return (6%), quality (3%), and prices (2%). Capacities 

of network facilities/transportation links, various types of costs and supply uncertainties have also been 

accounted for, with a frequency of 8%, 5%, and 4%, respectively.  

In light of the presented above, one can state that, concerning the SCND scenario, the obtained results 

of the sample of 72 papers is aligned with the findings of Govindan et al. (2017)’ works. Nonetheless, 

and once sustainability concerns are acknowledged in the models, there is the expected shift in the 

frequency of the uncertain parameters towards both environmental and social impacts, as well as 

products return rates and characteristics. Finally, and despite having sustainability considerations or 

not, demand continues to be the highest parameter to be considered uncertain when modelling 

uncertainty in supply chains.  

 

Figure 5 – Frequency of uncertain parameters in supply chain network design (SCND) 

 

Figure 6 - Frequency of uncertain parameters in sustainable supply chain network design (SSCND) 

On another note, question Q2 aims at understanding the distribution of papers among the discussed 

methods used to model uncertainty in supply chains: stochastic programming, fuzzy programming, 

robust optimization, robust adaptive optimization, and dynamic optimization, combined with stochastic 

programming or robust optimization. Accordingly, Govindan et al. (2017)’s research shows that a vast 

majority of the available literature up until 2015 have been greatly considering the usage of the 

stochastic optimization approach to model uncertain parameters in the supply chain network design, 

with a frequency of almost 73%. Following this is fuzzy programming, with about 14.7%, and robust 

programming, with a frequency of usage of about 5.9%. Furthermore, the authors also highlight the 

usage hybrid programming methods, where the combination of stochastic and fuzzy programming is the 
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most frequent (about 3.5%), followed by stochastic and robust, and robust and fuzzy, and stochastic, 

robust and fuzzy.  

Furthermore, when considering the sample of 72 papers, and according to Figure 7, it is clear that 

stochastic programming continues to be the most commonly used programming approach in both 

scenarios, SCND and SSCND, with 35% and 50% of frequency, respectively. Robust programming is 

the second most-used optimization method among the selected sample of papers (18% for SCND and 

21% for SSCND), followed by fuzzy programming (6% for SCND and 11% for SSCND). Moreover, it 

can be noted that when considering hybrid approaches, stochastic and robust programming are the 

strongest combination in the SCND scenario. Nonetheless, in SSCND, both stochastic and fuzzy, and 

stochastic and robust are equal in a total of 5% of the sample. On the other hand, the combination of 

fuzzy and robust programming approaches represents only 3% of the sample in each scenario. Finally, 

it should also be noted that there has been a relatively acceptable interest in more advanced forms of 

using optimization methods, especially in the field of SCND. This is clear with the usage of robust 

adaptive programming in 6% of the sample of papers concerning SCND, along with the usage of 

dynamic programming, namely stochastic dynamic and robust dynamic, as well as with the combination 

of stochastic dynamic and robust programming in one paper of the studied sample.  

 

Figure 7 - Optimization methods distribution used to model uncertainty distribution 

Looking more closely at some of these papers, one example of the usage of robust adaptive 

programming approach is the work developed by Xie, Hu, and Wang (2020), where the authors have 

proposed a “two-stage robust expansion planning model for a coupled ADS [Active Distribution System] 

and TN [Transportation Network]” while considering uncertainties regarding renewable energies, power 

load and traffic demand simultaneously. In the proposed two-stage model, investment decisions have 

been integrated in the first-stage, whereas the second-stage referred to the operation strategies for the 

traffic flow and active network management intended, where the overall purpose of the robust model 

developed was to identify the optimal first-stage solution by minimizing the total cost regarding the worst-

case outcome of uncertain renewable energies and demands. 

 

Zahiri, Suresh, and de Jong (2020), on the other hand, presented a stochastic dynamic programming 

approach in order to be capable of focusing on an integrated, proactive-reactive policy. This procedure 
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thus aims at reducing hazardous materials transportation risks in a such a way that numerous decisions 

(e.g., locating hazardous materials response teams and warehouses for storage) were possible to be 

made simultaneously with inventory and allocation decisions in a multi-period, multi-product hazardous 

material supply chain under demand uncertainty. Stochastic dynamic programming has hence been 

used due to its capabilities of dealing with stochastic data in a multi-period setting, where “data 

uncertainty can be expressed through a scenario tree and the objective function is to represent the total 

risk to the sequence of decisions”. Nonetheless, and in order to better portray several real-life 

applications where setting a certain probability to each arc, and, consequently, a certain value to each 

node is not realistic, the authors have presented a new multi-stage stochastic programming approach 

called layered multi-stage stochastic programming, where each probability arc is considered to be an 

uncertain parameter following a possibilistic membership function, as seen in Figure 8.  

 

Figure 8 - Uncertain scenario tree (Zahiri, Suresh, and de Jong (2020) 

Furthermore, the work developed by Shang and You (2018) is a good example of the application of the 

robust dynamic programming approach, where the authors have proposed an approach for solving 

process planning and scheduling problems under demand uncertainties and hedging against the 

inexactness of probability distributions of uncertainties. Thus, this study begins with a single-stage 

probabilistic-based robust optimization problem, which is then developed by incorporating wait-and-see 

decisions made after uncertainty realizations, in order to account for the multi-stage and multi-level 

decision-making structure in process operations.  

 

Finally, the work developed by  Shabani and Sowlati (2016) should also be highlighted, given its 

combination of stochastic dynamic programming, and robust programming with the purpose of 

optimizing a forest-based biomass power plant supply chain under biomass quality and availability 

uncertainties. Hence, the work begins by modelling the biomass quality using a robust optimization 

model, where the purpose was to find a robust solution, that is, a feasible solution for any realization of 

the uncertain parameter. Afterwards, multi-stage stochastic optimization is used in order to model the 

uncertainties regarding biomass availability, where a scenario tree is considered with each arc 

representing the rate of change from the average scenario in the available biomass from each supplier 

in each stage. Moreover, the scenario tree contains four stages, with each stage including three months, 

and where variations in biomass availability are stationary during the three months in each stage. Finally, 

and taking into account the authors’ findings, the hybrid model has proven to provide “consistently more 

conservative and more stable solutions compared to the previous deterministic model” studied by them.  
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Now considering question Q3, this can be answered by analysing the main optimization methods used 

to model each of the main uncertain parameters accounted for, regardless of the considered scenario, 

SCND or SSCND, represented in Figure 9. Hence, it becomes clear that demand uncertainty is mainly 

modelled through the usage of stochastic programming, followed by robust programming and fuzzy 

programming. Moreover, environmental impacts uncertainties are mainly modelled through stochastic 

programming (mainly carbon tax rates/prices, somehow established in society) and fuzzy programming, 

while social impacts, costs and returned products rates uncertainties heavily rely on fuzzy programming 

to be accounted for. Moreover, supply uncertainties are mainly modelled through stochastic 

programming optimization. Capacities uncertainties (e.g., facilities, transportation), on the other hand, 

rely equally on stochastic and fuzzy programming methods, with little work developed using robust 

programming. Thus said, it is plausible to state that in cases where historical data is given and/or easily 

obtained (e.g., demand), stochastic programming is the preferred method. Nevertheless, in cases where 

historical data is difficult to obtain, fuzzy programming has been the preferred approach to use. One 

example of this is the consideration of environmental and/or social concerns, two relatively recent topics 

approached in the literature. Hence, and due to the lack of historical data and sufficient knowledge of 

these matters, most authors are reluctant to use a more accurate method, and thus apply fuzzy 

programming to take advantage of the fact that no exact values are mandatory, but instead, only a range 

of grey values between two given extremes. The same conclusions can be applied to situations dealing 

with various costs and facilities capacities uncertainties, two highly uncertain parameters often easier to 

be considered within a higher range of possible values rather than more specific numbers. 

 

Figure 9 - Uncertain parameters and optimization methods studied relation 

On another note, question Q4’s purpose is to understand the main focus of the sample of papers 

regarding the different decision levels in a supply chain: strategic; tactical; and operational. Hence, a 

paper to be considered strategic should address a long planning cycle for several years out, which may 

be accomplished at an executive management level. On the contrary, a tactical paper deals with a 

shorter planning cycle, more focused on inventory, demand and/or supply planning. Finally, papers 

related with operational supply chain include demand fulfilment, production and distribution, as well as 

scheduling and monitoring activities that are current planning tasks measured weekly (Barbosa-Póvoa 

et al. 2018). 

According to Govindan et al. (2017)’ findings, 30% of all papers considered in their study have accounted 

for capacity decisions for supply chain facilities. Following this is the technology selection (13%), as well 

as transportation modes’ decisions (10.5%), and supplier selection for raw materials/components 
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(9.5%). Moreover, and considering the sample of the 72 papers being analysed, Figure 10 presents the 

distribution of such papers per decision level, where the first number in each group represents the SCND 

scenario, and the second the SSCND. Accordingly, one can conclude that these papers have been 

mainly focused on both strategic and tactical aspects, with a total of 45 (62.5%) and 44 papers (61.1%), 

respectively. Considering the former, most decisions relate to the supply chain network design of any 

kind, that is, forward, reverse, and closed-loop. As of the latter, some of the considered decisions relate 

to inventory management, and scheduling and production planning. Operational aspects, on the other 

hand, represent the decision level with the least amount of consideration in the selected papers, 

appearing in only 8 papers (11.1%). Furthermore, it is also possible to conclude that 18 papers 

considered both strategic and tactical aspects, while only five looked at both strategic and operational 

levels. As of tactical and operational aspects, these have been combined in two papers. Finally, no 

paper has considered all three decision levels. 

 

Figure 10 - Number of papers covering the different decision levels in supply chain 

Finally, question Q5 aims at focusing specifically on the sample of papers that account for sustainability 

concerns, with the purpose of understanding the main sustainability focuses considered. The findings 

to answer this question are portrayed in Figure 11. Moreover, and as previously stated, due to the 

sustainability emphasis of the research, papers that take into consideration only one of the three pillars 

of sustainability have not been accounted for. Thus, and due to the high number of situations where 

economic purposes are considered on their own, all papers that did not model explicitly environmental 

or social concerns were excluded, leaving only papers where at least two pillars of sustainability have 

been accounted for.  

Therefore, and in view of the information obtained in Figure 11, it is clear that the selected researches 

have a major focus on both economic and environmental concerns, where all papers consider this 

combination of sustainability pillars. Additionally, there is a lack of attention towards social concerns, 

which is only considered when combined with the remaining sustainability pillars, in a total of 8 papers. 

In light of this, one can state that, when addressing sustainability concerns, most authors only focus on 

the more studied and researched pillars, that is, economic and environmental, leaving a large research 

gap in the incorporation of social concerns.  



 

26 

 

 

Figure 11 - Number of papers per Sustainability Pillar 

Bearing in mind this analysis, one can further detail the information provided and present the major 

aspects considered in each sustainability pillar (Figures 12 – 14). Thus, the assessment of each 

sustainability pillar is given as follows.  

i. Economic Pillar  

Figure 12 shows the distribution of the economic indicators used in the selected papers to 

assess the economic pillar. Given its information, it is possible to verify that cost reduction has 

been the main economic objective function (71% of the total papers), while profit has been 

considered in 26% of the papers. The Net Present Value (NPV), however, is only considered 

in the remaining 3% of the papers. In light of this, when accounting for investment decisions, 

where high levels of risks are involved, the Net Present Value should be the primary indicator 

to be used, given its capabilities of incorporating such risks in the future cash flows. Thus, it is 

plausible to state that the distribution of indicators given in Figure 12 is uneven. Moreover, and 

in order to mitigate this, the percentage of papers addressing the NPV as the right economic 

indicator should rise, especially when considering network design decisions.  

ii. Environmental Pillar 

When considering the environmental pillar assessment given in Figure 13, it becomes clear 

that the majority of papers cover the global warming factor (74% of the total papers treating 

environmental concerns), represented by aspects related to carbon dioxide (CO2) emissions 

and greenhouse gases. Hence, it is possible to state that the environmental studies have been 

exploring a narrow perspective, where only aspects concerned with the carbon footprint have 

been measured.  

Additionally, utilities consumption is considered in 7% of all papers, whereas, waste reduction 

is considered in another 5% of all papers. However, and considering that waste is not an 

environmental impact category, but instead a flow, these authors have been trying to measure 

the environmental impact indirectly. As of biodiversity, this indicator is considered in 5% of all 

papers, while products recovery and fuel and energy consumption, in 2% each.  

Finally, the use of the Life-Cycle Assessment (LCA) approach is verified in only 5% of the 

papers. This approach, which has been described as the most scientifically reliable method 

currently available for studying and evaluating the impacts of a certain product or process, 

quantifies all relevant emissions and resources consumed, as well as the related 

environmental and health impacts and resource depletion issues that are associated with any 

goods or services. Hence, this approach takes into consideration the entire life cycle of the 

good or service, from the extraction of resources, through production, use, recycling and 
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disposal (Mota, Gomes, et al. 2015). Moreover, some literature exists where authors apply 

LCA methodologies to supply chain design, such as the Eco-Indicator 99 and the ReCiPe 

2008, each employed in only one of the selected papers. Thus, while the former reports several 

environmental impacts through a multi-echelon perspective, the latter is a further development 

of Eco-Indicator 99 and hence a more appropriate method. Thus said, and with LCA being a 

more complete methodology to assess environmental impacts, it should be further applied 

when studying the environmental pillar within supply chain, where the extended characteristics 

of LCA should be explored.  

iii. Social Pillar 

Regarding the social pillar, it is possible to verify from Figure 14 that job creation (either fixed, 

variable or both) has been the most common indicator, with a total of 47%. Afterwards, aspects 

related to regional development represents 27% of all papers concerning the social pillar of 

sustainability. Following this is the consideration for the safety and health of workers, with a 

total of 20% of all papers concerning the social pillar of sustainability. This number is calculated 

by the sum of both health & safety (13%) and number of lost workdays due to damages and 

workplace hazards (7%). Finally, the remaining 7% focus on the overall satisfaction of 

consumers.  

Considering this analysis, it is clear that only single issues have been applied and hence there 

is no integrated approach. Moreover, and given the relative diversity of indicators used, it is 

plausible to state that authors are still looking for a clear definition of social sustainability. 

Nonetheless, the GSLCAP (Guidelines for Social Life Cycle Assessment of Products) is a  

product-oriented social impact assessment method based on LCA that appropriately 

addresses social issues by following the supply chain logic and utilizing an environmental 

assessment method, such as the ReCiPe 2008, to further facilitate the model development 

and formulation (Ghaderi, Moini, and Pishvaee 2018; Messmann et al. 2020). Thus, the 

incorporation of a similar integrated approach might lead to the better modelling of social 

concerns and hence lead to feasible results. 

 

 

Figure 12 - Economic pillar assessment 

 

Figure 13 - Environmental pillar assessment
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Figure 14 - Social pillar assessment 

3.3. Sample Assessment – Conceptual Map  

The purpose of this review is to comprehend the usage of optimization methods to model uncertainty 

specifically in sustainable supply chains, where the focus of this research lies on. Thus, it is now clear 

that, according to subchapters 3.1 and 3.2, this is a relatively recent issue in the literature, with a 

diversification of the type problems addressed. Therefore, and to graphically portray the literature focus 

and the interest devoted to the research community to each one of the sustainable supply chain 

dimensions analysed, Figure 15 represents a conceptual map. Hence, one can conclude the importance 

of each dimension from the explicit information provided in each square. Moreover, and being 

sustainable supply chain (SSC) under uncertainty the motivation of this analysis, it is represented as the 

central point in this map. Afterwards, this central point ramifies into three main research streams 

representing the decision levels: Strategic; Tactical; and Operational. In turn, the sample of 38 papers 

concerning specifically sustainable supply chain network design is then further divided depending on 

each sustainability pillar: Economic; Environmental; and Social. Lastly, the sample of papers is further 

divided according to the final layer of division related to the optimization methods used to model 

uncertainty: Stochastic; Fuzzy; Robust; and Hybrid, which can either be through the combination of both 

stochastic and fuzzy optimization methods (SF), stochastic and robust methods (SR), or fuzzy and 

robust optimization methods (FR). It is also relevant to state that the usage of stochastic dynamic 

optimization is represented through the ‘+1’ present in some stochastic boxes.  

Considering the decision levels dimension, the strategic level has been the most studied one, where 

attention is mainly focused on network design problems in forward, reverse, and closed-loop supply 

chains. Among these papers, both the economic and the environmental pillars have been assessed at 

all times. Social concerns, on the other hand, have only been accounted for in about 27.6% (a total of 

8) of the papers with strategic purposes. Besides, and by further looking into this analysis, it is clear that 

stochastic programming has been the most used approach to model uncertainty while considering 

strategic decisions and economic and environmental concerns, followed by robust optimization and 

fuzzy programming. Regarding the strategic-social group, it is clear thar both stochastic and fuzzy 

programming are the most used methods, followed by robust optimization. Lastly, it should also be 

acknowledged the usage of more than one programming method in this strategic group, where all 

sustainability pillars have been covered by, at least, two papers using hybrid programming, where two 

of the studied methods have been combined.   
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On another note, the tactical level has been essentially addressed in conjunction with strategic 

decisions, with less than 41% of its total sample of papers considering tactical decisions, either on its 

own, or together with the operational decision level. It is also clear that all papers covering tactical 

decisions have accounted for both the economic and environmental pillars. The social pillar, on the other 

hand, has only been addressed in five of all papers concerning tactical decisions. Once again, stochastic 

programming is considered in the largest amount of papers in this group, with one case related to 

stochastic dynamic programming, followed by robust optimization and fuzzy programming. Additionally, 

three papers considering both economic and environmental concerns relate to the usage of hybrid 

programming methods, with the combination of stochastic programming and either fuzzy programming 

or robust optimization. Nonetheless, the hybrid programming cases reduces to only two papers in the 

social pillar of sustainability, where stochastic programming has been combined with fuzzy 

programming.  

Lastly, the operational level has been the least studied one, with only five papers considering this type 

of decisions. Besides, there is no paper addressing both operational decisions and the three pillars of 

sustainability altogether, leaving the social pillar with zero records. As expected, stochastic 

programming continues to be widely used, with one record of stochastic dynamic programming, whereas 

fuzzy programming has not been accounted for in this subgroup. Besides this, there is also one record 

of the usage of hybrid programming through the combination of both stochastic and robust programming 

methods.   

 

Figure 15 - Conceptual Map on modelling uncertainty in sustainable supply chains 

Looking closely at some relevant work developed in this area, the study developed by Mota et al. (2018) 

is an example where both strategic and tactical decisions have been accounted for, while also 

considering the three pillars of sustainability (economic, environmental, and social), leading to believe 

to be one of the most complete papers in the studied sample. Thus, this paper has presented a 

ToBLoOM –Triple Bottom Line Optimization Modelling, that is, a decision support tool for the design and 

planning of sustainable supply chains. It consists of a multi-objective mixed integer linear programming 

model integrating several interconnected decisions, such as: facility location and capacity determination; 
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supplier selection and purchase levels definition; technology selection and allocation; transportation 

network definition, including both unimodal and intermodal options; supply planning; and product 

recovery and remanufacturing. Moreover, the three pillars of sustainability have been addressed as 

objective functions with the overall goals of: (i) profit maximization, measured through the Net Present 

Value; (ii) environmental impact minimization, assessed through the LCA approach, with the ReCiPe 

2008 methodology; and (iii) social benefit maximization, measured through the development of a GDP-

based (Gross Domestic Product) metric relating the number of jobs created by the supply chain with the 

maximization of job creation in countries with lower economic development. Finally, demand uncertainty 

has been considered using the stochastic optimization approach.  

 

Tsao et al. (2018) is another good example of a paper addressing strategic-tactical problems together 

with economic, environmental and social concerns. Hence, the goal is to determine the number and 

location of facilities (i.e., production and distribution centres), as well as the product flows in the network, 

while bearing in mind the key objective functions: (i) minimize the total costs of the sustainable supply 

chain network; (ii) minimize the environmental impacts of the network, through the consideration of, not 

only the total equivalent emissions of CO2 caused by production and transportation, but also the amount 

invested in environmental protection at the production centres; and (iii) maximize the number of social 

benefits earned from establishing the network, measured through the number of job opportunities 

created, as well as through the amount of hazardous by-products associated with the selection of 

production technology and materials, and through the number of workdays lost due to workplace 

hazards. The main difference of this paper, however, lies on the usage of a hybrid approach, through 

the combination of both stochastic and fuzzy programming models, in order to model various uncertain 

parameters, such as: demand, cost, capacity, CO2 emissions, number of job opportunities, generation 

of hazardous by-products, and the average number of workdays lost due to the implementation of new 

technologies. Therefore, the two-phase stochastic programming approach has been used to divide the 

decision variables into two sets: (i) recourse-related variables, such as technologies, materials, and the 

number of facilities, determined using random variables; and (ii) output variables, namely the amount of 

product that is produced and shipped, determined using the realized value of random variables and 

which may have be influenced by stochastic variables in the model, such as demand in specific costumer 

zones. Finally, and through the usage of fuzzy possibilist programming, the multi-objective mixed-integer 

linear programming model obtained to formulate the sustainable supply chain network has been 

transformed into an equivalent crisp model, significantly reducing the problem’s complexity by adjusting 

the objective functions and constraint.  

 

Finally, the work developed by Purohit et al. (2016) has presented a novel approach of modelling 

demand uncertainty in sustainable supply chains using stochastic dynamic programming optimization. 

According to the authors, real-life supply chains face stochastic and non-stationary demand, but most 

studies on inventory lot-sizing with emission concerns consider deterministic demand. Therefore, the 

purpose of this research is to “deal with the inventory lot-sizing problem of a firm under non-stationary 

stochastic demand with carbon emission constraints”, where cycle service level has been considered 
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as a customer service measure in order to state that the demand process is not deterministic. By solving 

the mixed integer linear programming model presented, the authors have determined the optimal 

replenishment schedule that could minimize the systemwide cost in advance of the planning horizon. 

Environmental concerns, on the other hand, are stated as emission constraints, where carbon emissions 

are controlled under the carbon cap-and-trade regulatory mechanism applied over the planning horizon. 

Finally, the authors also state that a “static-dynamic uncertainty” strategy has been considered, where 

replenishment timing and corresponding stock levels are fixed at the beginning of the planning horizon 

and the order sizes for coming periods are determined after realization of the demands of previous 

periods.  

3.4. Chapter Final Remarks 

Considering that uncertainty incorporation into the design, plan and operation of a sustainable supply 

chain has been a fairly recent subject in the literature, the present literature review has considered the 

main contributors, not only to this issue, but also to the supply chain network design under uncertainty 

in general, together with the already developed work of Govindan et al. (2017) in this field. Moreover, 

the European Journal of Operations Research and the Journal of Cleaner Production, together with 

China, Canada, the USA, and several European countries, have proven to have done strong 

contributions to these studies.  

When observing in detail the main parameters to be considered as uncertain in the modelling of supply 

chains, demand has the highest frequency of occurrence, followed by concerns related with both 

environmental and social impacts (in the SSCND scenario), supply, various costs and capacities. 

Furthermore, and when considering the main optimization methods used, it is clear that stochastic 

programming has greatly contributed to this field, followed by fuzzy and robust programming 

approaches. Moreover, it should also be noted the utilization of more advanced methods, namely, robust 

adaptive programming, and dynamic programming, combined with either stochastic or robust 

programming. Finally, and when accounting for the relation of uncertain parameters acknowledged and 

the optimization methods used, one can note that, in cases where historical data is given and/or easily 

obtained (e.g., demand), stochastic programming is the preferred method.  

Additionally, it is clear that the strategic decision level has been the most addressed, followed by tactical 

and operational levels, being the former the least explored in the literature. Moreover, among the three 

sustainability pillars, both economic and environmental concerns have been accounted for at all times, 

leaving social aspects with less consideration. By further looking into the assessment of these pillars, 

economic concerns are mainly dealt by, either the minimization of costs, or the maximization of profit. 

Nonetheless, and considering the high risks associated with investments, a shift towards the usage of 

the NPV should be considered in the literature. In the environmental indicators’ distribution there is a 

strong focus on the global warming consideration and a lack of attention towards the usage of LCA-

based approaches, which have been described as the most scientifically reliable methods currently 

available for studying and evaluating the impacts of a certain product/process. Regarding the social 

pillar of sustainability, there has been a wide range of parameters being addressed, such as the number 
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of job opportunities created, and the regional development. However, no integrated approach has been 

proposed, leading to believe that authors are still looking for a clear definition of social sustainability.  

3.4.1. Uncertainty in Sustainable Supply Chains: Current Challenges 

Considering the main findings of the literature review provided above, it is possible to characterize the 

current challenges faced when modelling uncertainty in sustainable supply chains. Hence, aspects 

concerning the uncertain parameters to consider, as well as how to properly model them is emphasised. 

Moreover, attention towards sustainable and decision levels considerations is also provided.  

Accordingly, and considering Figure 16, several uncertain parameters that have proven to be highly 

considered should be accounted for, namely: demand; environmental and social data; supply and 

resources availability; various costs (e.g., production, transportation); and numerous capacities (e.g., 

facilities, transportation). Considering this, it is crucial to understand which optimization method(s) to 

use, where proper and efficient solution approaches should be applied in order to provide feasible and 

valid results. Thus, the choice of optimization method should be aligned with the type of uncertain 

parameter considered. For instance, in cases where historical data is given or can easily be obtained, 

optimization approaches dealing with more exact values and results should be investigated. Moreover, 

multi-stage (dynamic) programming should also be further studied, which, by considering a longer 

planning horizon, can provide decision-makers with more complete and reliable information.  

Concerning sustainability modelling, a holistic economic assessment, as well as a sound assessment 

of environmental and social aspects represent another challenge that should also be reached. Thus, 

economic objectives should be carefully selected depending on the type of analysis under consideration, 

where problems involving investments should consider project assessment indicators, such as the NPV, 

where the inherent associated risk is contemplated. Moreover, and given their characteristics, the use 

of LCA-based methods presents a research potential for the environmental pillar assessment. Likewise, 

the social pillar assessment, which has not yet been fully considered nor properly modelled, may benefit 

from an integrated approach, where social-LCA methods may prove to be successful. Finally, the 

integration of the different decision levels should also be acknowledged, in order to explore the multi-

functional activities of any supply chain (forward, reverse, or closed-loop) contemplating sustainability 

issues in a comprehensive manner, while fostering a supply chain holistic view. 

 

Figure 16 - Research Framework on sustainable supply chain under uncertainty 
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4. MODEL DEFINITION & CONCEPTUALIZATION 

The present chapter aims to present both the model definition and conceptualization, based on 

previously highlighted challenges. Thus, and due to their relevance in the literature, significant studies 

are discussed and reviewed with the purpose of serving as guidelines for the future model formulation, 

namely on the uncertainty incorporation, and on the proper environmental and social assessments.   

This chapter is organized as follows. In section 4.1, the selected optimization method to model 

uncertainty is presented and discussed considering key literature studies. Section 4.2 focuses on 

relevant work dedicated to the proper assessment of the three pillars of sustainability. Lastly, in section 

4.3, the chapter final remarks are stated. 

4.1. Optimization Method Selection  

Considering previously highlighted information and data related to the optimization methods often used 

to model uncertainty in supply chains (chapters 2 and 3), it becomes clear that dynamic optimization 

approaches bring robustness and generalization when compared to static optimization methods. 

Moreover, and given its relative lack of usage in the modelling of sustainable supply chains under 

uncertainty, it is plausible to state that this should be further explored.  

Subsequently, stochastic dynamic optimization has been selected as the optimization approach to be 

used. This choice, which mainly lies on the characteristics of the method, leads to the further selection 

of the proper technique to apply in order to describe uncertainty. Hence, and according to Sazvar et al. 

(2014), there are two distinctive approaches: i) the distribution-based approach, which is applied when 

a continuous range of potential future outcomes can be anticipated; and ii) the scenario-based method, 

which is applicable when the uncertainty is illustrated by a set of discrete scenarios forecasting how it 

might take place in the future, being each scenario associated with a probability level signifying the 

decision maker’s expectations of the occurrence of a particular scenario. On that account, and taking 

into consideration the relevant literature’s contributions and insights on the subject, the stochastic 

dynamic optimization approach is to be applied in the upcoming model through the scenario-based 

technique, applicable when a continuous range of future outcomes is not available. 

In the scenario-based approach, the uncertainty is represented by a scenario tree, where, at each stage, 

a discrete number of nodes represents points in time where realizations of the uncertain parameters 

take place and decisions must be made. Moreover, each node of the tree, apart from the root, is 

connected to both a unique node at the previous stage, known as the ancestor node, and to other nodes 

at the following stage, called the successors (Ben Mohamed, Klibi, and Vanderbeck 2020). As of the 

stages, these correspond to a time when the decision-maker updates the information with new available 

data, and not necessarily to specific time periods (Sazvar et al. 2014).  

A recent study developed by Ben Mohamed et al. (2020) portrays a proper example of the usage of 

stochastic dynamic optimization in the modelling of demand uncertainty. In this research, the authors’ 

purpose is thus to define a two-echelon distribution-network design problem under both uncertain and 

time-varying demand, as well as time-varying distribution platforms opening costs. In the presented 

modelling framework, it is considered that the planning horizon is composed by a set of planning periods 
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shaping the evolution of the uncertain ship-to-point demand over time. Furthermore, it is also assumed 

that the number and location of distribution platforms are not fixed a priori and must be decided at the 

strategic level along the set of planning periods.  

Thus said, the studied problem considers the business context of a retail company that sources a range 

of products from a number of supply sites, such as suppliers and manufacturing plants, and stores them 

at primary warehouses. Additionally, under a make-to-stock policy, the company operates a set of 

primary warehouses designed to “centralize inventories and ensure distribution to demand zones 

periodically”. Nonetheless, the locations of the company warehouses are not necessarily designed to 

provide next-day and/or same-day delivery. To do so, the company needs to deploy an advanced set of 

distribution resources to serve ship-to-points with an adequate service level, namely capacitated 

distribution platforms. Accordingly, the location of such platforms, as well as the links capacity between 

the warehouses and the ship-to-locations, compose the model’s strategic decisions. Moreover, and 

given that ship-to-point orders vary in quantity of product demanded on a daily basis, once a given set 

of distribution platforms is deployed, the company periodically determines the quantity of goods to be 

allocated to each distribution platform, translating into a number of full-load trucks required from 

warehouses to deliver products to a distribution platform. Afterwards, and on a daily basis, the goods 

are delivered to ship-to-locations through common or contract carriers for each single ship-to-point.  

Considering this, the proposed model studies a long-term planning horizon that covers a set of 

successive design planning periods, which are defined in accordance with the operational dynamics 

such that a planning period corresponds to a year, a typical scenario in the context of leasing distribution 

platforms. Additionally, each planning period covers a set of operational periods which are generally 

represented in a discrete way by common business days. Moreover, location and capacity decisions 

can be periodically adapted at each design period in order to align the distribution network to its business 

environment, especially when operating under uncertainty. Nonetheless, design decision must be made 

prior to their deployment period with partial information on the future business environment, which is 

available after the implementation period.  

Given the above, the model thus assumes information asymmetry between the design level and the 

operational level, mainly due to the fact that the decisions are not made simultaneously. Consequently, 

the model displays a multi-stage decision structure, where here-and-now decisions are made at the 

beginning of the planning horizon and thus considered as the first-stage design decisions of the 

distribution platforms. Afterwards, at the beginning of each subsequent period, and based on the current 

available information, a new opportunity to adapt the distribution network structure to its future 

environment is provided. Therefore, decisions made at the beginning of a period depend on the design 

decisions made up to such period. 

As of the uncertain daily demand of ship-to-points, this is represented by a random variable, which is 

estimated by a given probability distribution and has a mean value, estimated from historical data until 

time period zero. Furthermore, the random demand process is seen as time-varying, since “a multi-

period plausible future allows capturing factor transitions (inflation-deflation, population density, etc) that 

perturb the a priori estimation of demand behaviour and could thus impact the design decisions”. 
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Therefore, a trend function is associated with the random variable and its distribution probability and 

mean value, in order to shape demand realization.  

Hence, the uncertainty is characterized by a set of plausible future scenarios. Each scenario 

encompasses the demand realization for each period as well as for all the ship-to-points during a typical 

business day. Then, at the beginning of each period, the information available is updated according to 

the additional data revealed up to such time period. Therefore, and given the entire planning horizon, a 

scenario tree is built in order to characterize the realization of demand for each planning period, where 

scenario instances may be generated by Monte Carlo methods. Furthermore, and given its history up 

to the ancestor node, each node of the scenario tree is associated with a conditional probability of the 

random process in such instance. Moreover, the path from the root node to a terminal (leaf) node 

corresponds to a scenario, and represents a joint realization of the problem parameters over all periods.  

According to the authors, and as depicted in Figure 17 (a), in a typical multi-stage scenario tree, the 

scenario probability is obtained by multiplying the conditional probabilities through the path. Additionally, 

the authors have implemented the non-anticipatively principle5 by requiring that the decisions related to 

identical scenarios up to a given stage are considered the same and can thus be represented by a single 

variable. Nonetheless, and in order avoid writing the non-anticipatively constraints explicitly, restricted 

scenarios have been used, which are represented by each scenario tree’s branch, used to define 

recourse variables.   

Finally, and due to the complexity of solving large and complex problems as the one described above, 

the authors have presented two mechanisms that, through reduction and relaxation, can transform the 

“multi-stage stochastic program into a two-stage stochastic program that is sufficiently accurate to 

capture the essence of the problem while being solvable in practice”. Hence, the first mechanism 

consists on transferring from the original model all the design decisions of all periods to the first-stage, 

in order to be set at the beginning of the horizon. Therefore, only first-stage design decisions are made 

here-and-now, but subsequent design decisions are essentially used as an evaluation mechanism, 

which are deferrable in time according to their deployment period. The alternative mechanism, on the 

other hand, transfers from the original model and into the first-stage only the periods whose design 

decisions are related to the location decisions, whereas all capacity-allocation decisions are relaxed and 

allocated into the second-stage, for all periods. Thus, the latter capacity-allocation decisions become 

part of the recourse problem and hence scenario-dependent.  

Accordingly, when transforming a multi-stage stochastic model into a two-stage stochastic one, the 

scenario building approach is impacted since, from stage two onwards, the scenario tree construction 

algorithm can reduce the number of nodes to a fan of individual scenarios that prescribes the random 

parameter value for the full-time horizon with a given probability. Hence, and as depicted in Figure 17 

(b), scenarios are independent of the number of periods. Finally, Figure 18, provides a representative 

scheme of the methodology and considerations employed by the authors.  

 
5 Additional and necessary constraints to ensure that scenarios with a common history must have the same set of 

decisions and that future outcomes cannot be anticipated  
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Figure 17 - Scenario tree representation and notations (Ben Mohamed et al. 2020) 

 

Figure 18 - Representative scheme of the employed methodology by Ben Mohamed et al. (2020) 

On another note, Shabani and Sowlati (2016) have presented an alternative approach to modelling 

uncertainty in supply chains, through the combination of robust optimization and stochastic dynamic 

optimization, where the scenario tree method has been considered as well. Hence, the provided model 

is based on “a forest biomass power plant whose supply consists of several different suppliers that 

provide distinct types of forest-based biomass to the plant, an open storage yard for storing the mix of 

biomass, and a power plant that generates electricity”. Moreover, and even though the plant has fixed 

contracts with some suppliers and hence purchases the residues they produce with a fixed cost, such 

suppliers have no obligation to produce biomass for the power plant when they do not product their main 

products. Having said that, the presented study focuses on the modelling of uncertainty in both biomass 

quality and availability.  

Considering this, the power plant must generate sufficient electricity to meet its costumer’s demand 

throughout the year. Alternatively, the power plant also has the option of generating more electricity than 

the strictly needed and hence sell it on the open market price whenever it is profitable. Thus, and despite 

the decision of whether to produce the surplus amount of electricity or not, the company must determine 
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this action in the beginning of each year and not change it throughout this period. Moreover, and taking 

into account the generated biomass, this depends on the type of product that is supplied, which, once 

received, is mixed and stored in a storage yard until combusted. Additionally, the biomass storage may 

have two distinctive upper limits and one lower limit, being the latter a reference point for the 

deterioration of biomass quality, a product property that can be highly variable.   

According to the authors, and considering the goal of employing an appropriate method to model 

uncertainty, there were faced with problems regarding both the insufficient data concerning the 

probability distribution of the biomass quality, and issues concerning the dimensionally of the problem, 

factors to be critical to the usage of certain approaches, namely stochastic programming. Subsequently, 

and in order to model both uncertainties (biomass quality and availability) adequately, the authors have 

proposed a hybrid multi-stage stochastic programming-robust optimization model, where the biomass 

quality uncertainty is modelled through robust optimization, and its availability uncertainty incorporated 

into the hybrid approach.  

Therefore, and considering the modelling of biomass’s quality uncertainty, this was incorporated into the 

linear optimization model through the robust optimization method, where a robust solution is defined as 

“one that must be feasible for any realization of the uncertain parameter”. Afterwards, and in order to 

propose the hybrid multi-stage stochastic programming-robust optimization model, the scenario tree 

approach has been used. Hence, the scenario tree contains four stages, where each includes three 

successive months. It has been also assumed that variations in biomass availability are stationary during 

the three months in each stage, and that each arc represents the rate of change from the average 

scenario in the available biomass from a given supplier in each stage. Finally, and according to the 

authors results, the present hybrid model has provided consistently more conservative and more stable 

solutions when compared to a previously studied deterministic model. Figure 19 provides the 

considerations and overall scheme employed by the authors in the incorporation of both robust and 

stochastic dynamic optimization.  

 

Figure 19 - Representative scheme of the employed methodology by Shabani and Sowlati (2016) 
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4.2. Sustainable Integrated Approaches Selection 

As previously stated, when accounting for sustainability concerns, one should consider the application 

of integrated approaches for both environmental and social concerns, in order to better provide accurate 

and significant results. Thus said, the present subchapter further explores two integrated approaches 

proven to be appropriate for this matter, namely the Life Cycle Assessment, and the Social Life Cycle 

Assessment approaches, with the purpose of providing additional information, and to be latter 

incorporated in the model.  

4.2.1. Environmental Assessment 

When considering the several existing methods and frameworks available to assess the environmental 

impact, the LCA approach is described as the most scientifically reliable option currently available for 

studying and evaluating the environmental impacts of a certain product of process, allowing both 

retrospective and prospective assessment (Mota, Isabel, et al. 2015; Ness et al. 2007). Accordingly, 

LCA is an environmental impact assessment method that quantifies all relevant emissions and 

resources consumed, as well as the related environmental and health impacts and resource depletion 

issues that are associated with any goods or services. Moreover, it takes into consideration the entire 

life cycle of the good or service, from extraction of resources, through production, use, recycling, and 

disposal (Commission 2010).  

According to Mota, Isabel, et al. (2015), and as depicted in Figure 20, a typical LCA method follows a 

generic structure, where the initial step considers the collection of the life-cycle inventory of a given good 

or service. Following this is the characterization step, where the environmental impact of each emitted 

substance or resource consumed is determined and categorized in either a midpoint and/or endpoint 

environmental impact category, which, in turn, correspond to the environmental mechanism itself and 

to the subsequent damage, respectively. This structure continues with both the normalization and 

weighting steps (step 3 and 4, respectively), and finishes in step 5, with the arrival at a single score.   

 

Figure 20 - Typical structure of LCA methods (Mota, Isabel, et al. 2015) 

Within the LCA approach, there are several distinctive methods available and being developed, which 

may use different models in the characterization step, different normalization assumptions and/or 

different weighting factors (Carvalho et al. 2014). However, and given the broad usage and utilization of 

such method in several areas, it is challenging to conclude which is more appropriate. Nonetheless, and 

according to Mota, Isabel, et al. (2015), the ReCiPe methodology, not only portrays a follow up of the 

Eco-Indicator 99 method, but also combines the CML 2002, while following the typical LCA structure 

provided in Figure 20. Therefore, and also considering that the European Commission defends this is 

the most developed methodology currently available, the authors have selected the ReCiPe 

methodology to assess the environmental impact in the developed study.  
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Thus said, and when taking a closer look at the work developed by Mota, Salema, et al. (2015), it can 

be noted that, by using the ReCiPe 2008, the study’s supply chain as a system has been used as a 

functional unit in order to be compared. Hence, a Life Cycle Analysis has been performed on the 

products, transportation mode and entities (warehouses and factories) existent within the defined 

boundaries of the supply chain studied. Moreover, the Life Cycle Inventory (LCI) of each product, 

transportation mode and entity has been retrieved from the Ecoinvent database, which the authors have 

assessed through the software SimaPro 7.3.2. From this resulted an inventory list (e.g. pollutants, 

resources depleted) and the corresponding quantities, which have used to determine the environmental 

impact of each activity (production, transport and installation of entities) on each impact category. 

Furthermore, the resulting environmental impacts have been used as input data (parameters) to the 

mathematical model formulation.  

Lastly, and now considering the following steps of the LCA structure presented (3,4 and 5), these have 

been performed within the developed function, where the obtained values of the overall impact of each 

activity in each category have been aggregated into a single score (NI) using the normalization and/or 

weighting factors of the ReCiPe 2008 methodology. Finally, the obtained single score has become the 

model’s objective function, whose goal is to be minimized. 

4.2.2. Social Assessment 

Regarding the social pillar of sustainability, it has been concluded in chapter 3 that the overall literature’s 

contribution does not follow an integrated approach, but only several distinctive social indicators instead. 

Considering the numerous advantages of using an approach of this kind, namely the holistic view of the 

social indicators, it is thus crucial to account for this issue and hence propose a possible method to be 

followed. Hence, and according to Ramos Huarachi et al. (2020), the Social Life Cycle Assessment 

(SLCA) is presented as the most effective technique, within the Life Cycle Sustainability Assessment 

(LCSA)6, to assess the social impacts of products throughout their life cycles.  

Accordingly, the SLCA is defined as an assessment technique of social and socioeconomic aspects of 

products and their positive and negative impacts (and potential impacts) along their entire life cycles. 

Moreover, it should also be noted that the ultimate objective for conducting the SLCA is to promote 

improvement of social conditions and of the overall socio-economic performance of a product throughout 

its life cycle for all of its stakeholders (Benoît et al. 2013; Ramos Huarachi et al. 2020).  

Additionally, and taking into consideration the work developed by Benoît et al. (2013), the SLCA follows 

a similar framework as the (environmental) LCA, and is thus organized in four steps as follows: 

i. Goal and scope definition 

In the first step of the SLCA framework, several concepts should be considered and defined. 

Hence, the first step is to define the goals of the study, which refer to its description, where 

questions such as the reason to conduct such study, its intended use, what is meant to be 

assessed, and who is meant to use the results, are answered. Moreover, and in order to specify 

 
6 Evaluation of all environmental, social, and economic negative and positive impacts in decision-making processes 

towards more sustainable products throughout their life cycle 
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the scope of the study, it should be clear that it encompasses issues of depth and breadth, 

where limits are placed and defined not only on the product’s life cycle, but also on the detail of 

information to be collected and analysed.  

The function of the product and the functional unit, on the other hand, represent the role of the 

product for its customers, and the quantified description of the performance requirements that 

the product system fulfils, respectively. Considering this, and in order to clearly specify the 

functional unit, practitioners must firstly describe the function of the product. Additionally, and 

so as to properly define a valuable functional unit, several steps should be considered as 

follows: (i) description of the product and its properties; (ii) market segmentation of the product; 

(iii) identification of relevant product alternatives; (iv) definition and quantification of the product’s 

functional unit, in terms of the obligatory product properties required by the relevant market 

segment; and, (v) reference flow7 determination for each of the product systems. 

Other key actions to conduct in this stage refer to the determination of the activity variable to 

use and the unit processes to include, the planning and specifying of the data collection, and 

the identification of the stakeholders involved in each process, where five categories have been 

considered: workers, local community, society, consumers, and value chain actors. 

ii. Social Life Cycle Inventory analysis 

The second part of the framework relates to the data collection, the modelling of the systems, 

and the obtention of results. Thus, several actions may be considered, namely: (i) data collection 

(for prioritizing and screening, generic data, and hotspot assessment); (ii) main collection 

preparation; (iii) main data collection; (iv) impact assessment preparation for necessary data; 

(v) data validation; (vi) main data relation establishment to functional unit and unit process (when 

applicable); (vii) system’s boundary refinement; and, (viii) data aggregation (when applicable). 

iii. Social Life Cycle Impact assessment 

This section aims at selecting the impact categories and subcategories and characterizing 

methods and models, relating the inventory data to particular subcategories and impact 

categories (classification), and, determining and/or calculating the results for the subcategory 

indicators (characterization). Hence, impact categories can be defined as logical groupings of 

SLCA results, related to social issues of interest to stakeholders, whereas the subcategories 

represent the socially relevant characteristic or attribute to be assessed (e.g., fair salary).  

iv. Social Life Cycle Interpretation 

The final stage of the framework aims at identifying significant issues, evaluate the study in 

hand, identify the level of engagement with stakeholders, and provide relevant conclusions, 

recommendations, and reporting.  

Hence, the discussed assessment system is based on the identified stakeholder categories (workers, 

local community, society, consumers, and value chain actors), and, consequently, on the appropriate 

indicators, that is, subcategories, for each relevant stakeholder. Once considered all appropriate 

 
7 Quantified amount of product(s), including product parts, necessary for a specific product system to deliver the 

performance described by the functional unit 
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stakeholders and issues to address for the case-study in hands, the subcategories are selected from a 

vast list of 31 subcategories provided by Benoit-Norris (2013), where each considered indicator is 

carefully defined and explained (complete list available in Appendix BAppendix ). Finally, once all 

indicators are selected, these are accounted for in the modelling of the decision-support tool.  

4.3. Chapter Final Remarks 

When accounting for the several challenges proposed, and taking into consideration the numerous 

methods for modelling uncertainty in sustainable supply chains, it is vital to apply more generalized and 

robust methods. Thus said, dynamic programming optimization approaches are seen as the more 

appropriate, not only due to their characteristics, but also due to its relative lack of usage in this field. 

Additionally, and among these methods, the stochastic dynamic programming approach has been 

selected as the optimization approach to be applied.  

Accordingly, there are two distinctive approaches within the stochastic dynamic programming method: 

the distribution-based approach, and the scenario-based approach. Thus, and while the former is 

applied when a continuous range of potential future outcomes can be anticipated, the latter is applicable 

when the uncertainty is illustrated by a set of discrete scenarios forecasting how it might take place in 

the future. On that account, and given that the scenario-based technique has been selected as the most 

appropriate approach, two key literature articles considering this method have been carefully described 

as thus portrayed as proper examples to be followed in the modelling of uncertainty in sustainable supply 

chains.  

Finally, and when accounting for sustainability concerns, the application of integrated approaches for 

both environmental and social concerns are crucial in order to better provide accurate and significant 

results. Thus, two integrated approaches, namely the Life Cycle Assessment, and the Social Life Cycle 

Assessment methodologies have been described and acknowledged as appropriate for this matter. 
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5. MODEL FORMULATION & DEVELOPMENT 

The present chapter focuses on providing a solid and complete mathematical model portraying a generic 

sustainable supply chain under uncertainty, through its formulation and development. Hence,  previously 

highlighted considerations, namely the uncertainty parameters incorporation, as well as the economic, 

environmental, and social considerations are accounted for.  

This chapter is organized as follows. Section 5.1 focuses on the problem definition. In section 5.2, the 

mathematical formulation of the model is provided with the incorporation of crucial and previously 

highlighted aspects. Lastly, in section 5.3 the chapter final remarks are stated. 

5.1. Problem Definition 

The development and formulation of the decision-support tool for the design and planning of a 

sustainable supply chain under uncertainty follows the developed work accomplished by Mota et al. 

(2018), where the authors have proposed a decision-support tool for the design and planning of closed-

loop supply chains by focusing on strategic-tactical problems. The present work models the same 

generic supply chain representation, which follows a four-echelon structure, as depicted in Figure 21.  

Thus said, and by following the provided network structure, it becomes clear that raw materials flow from 

suppliers to factories in order to be transformed into final products. Production technology (i.e., process) 

selection is available at the factories, where each can have a maximum of one production technology 

allocated. Once the final products are obtained, these can either flow to warehouses or directly to 

markets to be sold. Concerning the inventory of final products, this is allowed at both factories and 

warehouses. As for the end-of-life products, these are recovered at the markets and sent back to either 

warehouses or directly to factories, and, once at the factories, are remanufactured and transformed 

once more into final products. Following the same pattern as earlier, remanufacturing technology 

selection is only allowed at the factories and with a maximum of one remanufacturing technology per 

factory. Furthermore, transhipment between warehouses is allowed, and the transportation between 

different entities can be performed by either unimodal or intermodal transportation, where the latter may 

include road, air and sea transportation options. Regarding outsourced and insourced options, the 

former is modelled for air and sea transportation, while the latter for road transportation. Rail 

transportation, on the other hand, is not explicitly modelled given its lack of presence in the case-study 

to be considered. Nonetheless, this option can easily be included by adding/modifying the model inputs. 

Moreover, hub terminals are modelled as supply chain entities since they connect and allow for the 

material transfer from one transportation mode to another. Concerning the three pillars of sustainability, 

these are introduced as objective functions, while the uncertainty often present in a sustainable supply 

chain is associated with parameters such as: product demand; raw materials supply; recovered 

products’ rate of return; and, significant costs, related, for instance, to transportation and facilities 

construction. The boundaries for this analysis are set to only include company-internal costs, and both 

environmental and social impacts.  
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Figure 21 - Network representation (adapted from Mota et al. 2018) 

Henceforth, and taking into account the provided information, the present study is focused on adding 

the following contributions on the defined goals set by Mota et al. (2018): 

▪ Uncertainty consideration in parameters considered to be more critical in the design and 

planning of a sustainable supply chain, such as: product demand; raw materials supply; 

transportation and facilities construction costs; and, recovered products rate of return; 

▪ Risk consideration in the economic objective function, so as to better portray the economic 

investment liability; 

▪ Environmental assessment based on the ReCiPe 2016 LCA methodology; 

▪ Social assessment though the incorporation of social indicators related to the contribution to 

economic development, equal opportunities/discrimination, and health and safety of workers. 

5.2. Mathematical Formulation 

As previously stated, the mathematical formulation of the proposed sustainable supply chain model 

under uncertainty follows the work developed by Mota et al. (2018) and further develops it in order to 

incorporate the stochastic dynamic programming approach so as to model the uncertainty often faced 

in key aspects considered to be challenges in subchapter 3.4. Hence, this incorporation is based on  the 

main literature findings described in chapter 4, and is thus applied to product demand, raw materials 

supply, transportation and facilities construction costs, and, recovered products rate of return. 

In order to better comprehend the multistage working logic applied in the stochastic dynamic approach, 

one can firstly study the simpler form of stochastic programming, that is, the two-stage stochastic 

programming, since it follows the same principles as the former. Henceforth, in the first-stage of the two-

stage stochastic programming approach, a decision must be made before the realization of the uncertain 

data is clear. Hence, the optimal solution of the first-stage is fixed and only afterwards it is known which 

values have the uncertain parameters assumed. Subsequently, and given both the fixed solution of the 

first-stage and the new available data, a recourse action can be taken in the second-stage, and hence 

the optimal solution determined. Therefore, each possible realization of the uncertain parameters is 

represented by a scenario, and the overall purpose is to reach a feasible solution that minimizes the 

total costs, namely the sum of the first-stage costs, and the expected second-stage costs.  

Having said that, the logic behind the two-stage stochastic approach can be easily extended to a multi-

stage stochastic model, where, at the beginning of each stage the uncertainty is resolved, and recourse 

decisions and adjustments are made after the information becomes available. Hence, at the point where 

decisions are made, only outcomes of the current and previous stages are provided. Figure 22 

schematically represents the logic behind the multi-stage stochastic programming, where the 
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representative example of demand uncertainty is provided for better comprehension. Accordingly, at 

stage 1, the initial decision of the amount of product to produce is set, which may be challenged once 

stage 2 begins and the actual demand, provided by its random variable, is known, leading to the need 

of having a recourse action. Hence, all random variables (e.g., demand) realized in stage k are fixed 

parameters in stage k+1. As for the stage 1 random variables (e.g., demand), these are given by 

deterministic values. 

 

Figure 22 - Multistage working logic 

Therefore, the model uncertainty incorporation follows the stochastic programming approach through 

the usage of the scenario tree concept, followed by several authors and described in subchapter 4.1. 

As depicted in Figure 23, the scenario tree is composed of several stages t, where each does not 

necessarily correspond to a specific time period but instead to a time when the decision-maker updates 

the given information with new data. Moreover, a discrete number of nodes e is set at each stage of the 

scenario tree, and represents points in time where realizations of the uncertain parameter(s) take place 

and decisions are made. Finally, the scenario s is given by the path from the root node to a terminal 

node (leaf) and represents a joint realization of the problem parameters over all periods 𝑡 ∈  𝑇. 

As of the uncertain parameters, these are represented by a random variable, which is estimated by a 

given probability distribution, and where the set Ω identifies the plausible future scenarios characterizing 

the uncertainty. The probability distribution to employ may be chosen considering the type of uncertain 

parameter and situation in study, where a wide range of probability distributions are a possibility. 

Additionally, πb(e),e represents the conditional probability of the random process of a given parameter in 

node e given its history and path up to ancestor node b(e). Hence, and from the multiplication of the 

conditional probabilities obtained through the path, the scenario probability is obtained.   

 

Figure 23 - Generic scenario tree representation for parameters uncertainty (adapted from Ben Mohamed et al. (2020)) 

Considering the above, and according to subchapter’s 3.4 main conclusions, the following model 

formulation considers the uncertain parameters to be the demand, the supply and various supply chain’s 
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costs. Hence, these are represented by random variables estimated by probability distributions. The 

scenario tree concept is employed considering the time period t = 1, … ,T, with a total of e nodes and a 

set of plausible future scenarios given by Ω. Finally, and as required when working under the scenario 

logic, the non-anticipatively equations are also accounted for, in order to ensure that scenarios with a 

common history have the same set of decisions and that future outcomes cannot be anticipated. The 

complete multistage stochastic model formulation is provided and detailed in 5.2.1 as follows.  

5.2.1. The Stochastic Dynamic Model Formulation 

Indices and related sets 

i, j         Entities or locations          I = Isup U If U Iw U Ic U Iair U Iport = Iloc1 U Iloc2 U …  

  Isup                     Suppliers 

  If  Factories  

  Iw  Warehouses 

  Ic  Markets/Clients 

  Iair  Airports 

  Iport  Seaports 

  Iloc1 , Iloc2 Location 1, Location 2, … 

a         Transportation Modes       A = Atruck U Aplane U Aship  

  Atruck                  Truck 

  Aplane  Airplane  

  Aship  Ship 

g         Technologies (i.e., processes)      G = Gprod U Grem  

  Gprod                   Production technologies 

  Grem  Remanufacturing Technologies  

m, n     Products         M = Mrm U Mfp U Mrp  

  Mrm                     Raw Materials 

  Mfp  Manufactured Products  

  Mrp  Recovered Products 

t          Stages  

s          Scenarios 

γ          Investments (1 = entities, 2 = technologies, 3 = transportation)    

c           Environmental midpoint categories 

U          Allowed entity-entity connections U =  {(i, j) ∶  i, j ∈ I}  

V          Allowed product-entity relations  V =  {(m, i): m ∈ M ∧ i ∈ I}  

H          Product-technology pairs   H =  {(m, g): m ∈ M ∧ g ∈ G} 

 Hprod – product-technology pairs for production technologies 

 Hrem – product-technology pairs for remanufacturing technologies  

F Allowed flows of materials   F = {(m, i, j): (m, i) ∈ V ∧ (i, j) ∈ U} 

 between entities  
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 The description of each subset considers the given examples: 

 FINFFP – final product (FP) that enters (IN) factories (F) and comes from entity i 

 FOUTFFP – final product (FP) that leaves (OUT) factories (F) and goes to entity i  

 FOUTW – allowed flows of products leaving (OUT) warehouses (W)  

Net  Allowed transport modes               Net = {(a, i, j): a ∈ A ∧ (i, j) ∈ U} 

 between entities        

NetP All allowed network                            NetP =  {(a,m, i, j): (a, i, j) ∈ Net ∧ (m, i, j) ∈ F} 

 

Parameters 

The considered parameters are grouped by type (entity, product, technology, transportation mode, 

environment, stochastic, and others), as follows.  

Entity related parameters  

𝑠𝑐𝑚𝑖
𝑚𝑖𝑛  Minimum supply quantity of product m at supplier i  

𝑒𝑐𝑖
𝑚𝑎𝑥  Maximum flow capacity in entity i  

𝑖𝑐𝑚𝑖
𝑚𝑎𝑥 Maximum inventory capacity for product m in entity i  

𝑖𝑐𝑚𝑖
𝑚𝑖𝑛 Minimum inventory level for product m in entity i  

𝑖𝑛𝑠𝑚𝑖 Stock of product m in entity i in stage 1  

𝑒𝑎𝑖
𝑚𝑎𝑥 Maximum installation area of entity i  

𝑒𝑎𝑖
𝑚𝑖𝑛 Minimum installation area of entity i  

ℎℎ𝑐𝑖 Handling costs at the hub terminals  

𝑤𝑖 Workers needed when opening entity i 

𝑙𝑐𝑖 Labour cost at location i 

𝑤𝑝𝑠𝑞𝑖 Necessary number of workers per square meter for entity i 

Product related parameters 

𝐵𝑂𝑀𝑚𝑛
𝑓

           Bill of materials at the factory for non-transformed products 

𝐵𝑂𝑀𝑚𝑛𝑔
𝑝𝑟𝑜𝑑

         Production bill of materials  

𝐵𝑂𝑀𝑚𝑛𝑔
𝑟𝑒𝑚          Remanufacturing bill of materials 

𝐵𝑂𝑀𝑚𝑛           Bill of materials at warehouses, airports and seaports 

𝐵𝑂𝑀𝑚𝑛
𝑟𝑒𝑐𝑜𝑣        Bill of materials at clients for recovered products  

𝑎𝑝𝑢𝑚           Necessary area per unit of product m 

𝑎𝑝𝑢𝑟𝑚           Necessary area per unit of product m assuming product rotation 

𝑝𝑠𝑢𝑚           Price per sold unit of product m 

𝑟𝑚𝑐𝑚𝑖           Cost of raw material m supplied by supplier i  

𝑟𝑝𝑐𝑚           Cost of recovered product m  

𝑝𝑤𝑚           Weight of product m  

𝑠𝑐𝑚           Inventory cost of product m  

Technology related parameters 

𝑝𝑐𝑔
𝑚𝑎𝑥 Maximum production capacity of technology g 

𝑝𝑐𝑔
𝑚𝑖𝑛 Minimum production level of technology g 
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𝑜𝑝𝑐𝑔 Operational costs of technology g  

𝑤𝑔 Fixed workers per technology g 

𝑡𝑒𝑐𝑔           Installation cost of technology g 

Transportation related parameters 

𝑐𝑡𝑎
𝑚𝑎𝑥           Maximum capacity of transportation mode a 

𝑐𝑡𝑎
𝑚𝑖𝑛           Minimum cargo to be transported by transportation mode a  

𝑐𝑐𝑎𝑎
𝑚𝑎𝑥           Contracted capacity with airline/freighter 

𝑎𝑣𝑠           Average speed (km/h) 

𝑚ℎ𝑤           Maximum driving hours per week 

𝑓𝑡𝑐𝑎           Fixed transportation cost for transportation mode a  

𝑖𝑛𝑣𝑡           Maximum investment in trucks  

𝑎𝑣𝑐𝑎           Average vehicle consumption (1 per 100 km) 

𝑓𝑝           Fuel price (€/l) 

𝑣𝑚𝑐           Vehicle maintenance costs (€/km) 

𝑐𝑓𝑝𝑖 Contracted payment to the airline or freighter for allocated capacity per stage and/or for 

hub terminal use 

𝑤𝑎 Workers per transportation mode a for the case of road transportation. For the cases of 

air and sea transportations, it represents the average number of jobs created in airlines 

and freighters per kg km 

Environmental related parameters 

𝑒𝑖𝑚𝑔𝑐 Environmental impact characterization factor of producing product m with technology g at 

midpoint category c (per product unit) 

𝑒𝑖𝑎𝑐 Environmental impact characterization factor of producing product m with transportation 

mode a at midpoint category c (per kg km) 

𝑒𝑖𝑖𝑐 Environmental impact characterization factor of installing entity i at midpoint category c 

(per square meter) 

𝜂𝑐 Normalization factor for midpoint category c 

Social related parameters 

𝑤𝑒𝑑 Importance weight of social impact indicator related to the contribution to economic 

development subcategory 

𝑤𝑔𝑟 Importance weight of social impact indicator related to the equal 

opportunities/discrimination subcategory through the wage level between genders 

𝑤𝑎𝑐𝑐 Importance weight of social impact indicator related to the health and safety of workers 

subcategory through the number of accidents occurred  

𝑠𝑖𝑚𝑖𝑛
𝑒𝑑  Minimum possible value of social impact related to the contribution to economic 

development subcategory 

𝑠𝑖𝑚𝑎𝑥
𝑒𝑑  Maximum possible value of social impact related to the contribution to economic 

development subcategory 

𝑠𝑖𝑚𝑖𝑛
𝑔𝑟

           Minimum possible value of social impact related to the equal opportunities subcategory 
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𝑠𝑖𝑚𝑎𝑥
𝑔𝑟

           Maximum possible value of social impact related to the equal opportunities subcategory 

𝑠𝑖𝑚𝑖𝑛
𝑎𝑐𝑐            Minimum possible value of social impact related to the health and safety subcategory 

𝑠𝑖𝑚𝑎𝑥
𝑔𝑟

           Maximum possible value of social impact related to the health and safety subcategory 

𝑒𝑣𝑖 Economic value of entity i 

𝑟𝑑𝑖 Regional development level at location i  

𝑓𝑎𝑤𝑖 Average female wage in entity i  

𝑚𝑎𝑤𝑖 Average male wage in entity i  

𝑟𝑎𝑖 Number of accidents reported in entity i  

𝑐𝑒𝑖 Contribution factor of entity i to the supply chain  

𝑓𝑠𝑐𝑖 Contribution of entity i to the supply chain  

𝑡𝑓𝑣𝑖          Total value of entity i in the supply chain  

Stochastic parameters  

𝑠𝑐𝑚𝑖𝑠
𝑚𝑎𝑥  Maximum supply capacity for product m by supplier i under scenario s 

𝑠𝑞𝑚𝑐𝑖𝑠 Construction cost of entity i per square meter under scenario s 

𝑑𝑚𝑑𝑚𝑖𝑡𝑠           Demand of product m by client i in stage t under scenario s 

𝑟𝑒𝑡𝐹𝑚𝑠           Minimum return fraction of end-of-life products under scenario s 

𝑡𝑐𝑎𝑠           Variable transportation cost of transportation mode a per kg.km under scenario s 

𝜌𝑠 Probability of occurrence of scenario s, where ∑  𝜌𝑠  =  1𝑠∈S  

Others 

𝑑𝑖𝑗 Distance between entities i and j (km) 

𝐵𝑖𝑔𝑀 Large number 

𝑤𝑝𝑡 Number of weeks per stage  

𝑤𝑤ℎ Weekly working hours 

𝑖𝑟 Interest rate 

𝑠𝑣𝛾 Percentage salvage value of investment 𝛾 

𝑡𝑟 Tax rate 

𝜕 Cash flow certainty estimation percentage 

 

Decision Variables 

Continuous variables  

𝑆𝑚𝑖𝑡𝑠 Amount of inventory of product m in entity i in stage t under scenario s 

𝑃𝑚𝑔𝑖𝑡𝑠 Amount of product m produced with technology g at entity i in stage t under scenario s 

𝑅𝑚𝑔𝑖𝑡𝑠 Amount of product m remanufactured with technology g at entity i in stage t under 

scenario s 

𝑋𝑚𝑎𝑖𝑗𝑡𝑠 Amount of product m transported by transportation mode a from entity i to entity j in stage 

t under scenario s 

𝑌𝐶𝑖 Capacity of entity i   

𝑌𝐶𝑇𝑖𝑡𝑠 Used capacity in entity i in stage t under scenario s 
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𝐾𝑎𝑖𝑡𝑠 Upper bound for the number of transportation mode a leaving entity i in stage t under 

scenario s 

Integer variables  

𝐾𝑎𝑖 Number of transportation modes in entity i  

𝑄𝑎𝑖𝑗𝑡𝑠 Number of trips with transportation mode a between entities i and j in stage t under 

scenario s   

Binary variables  

𝑌𝑖 = 1 if entity i is installed 

𝑍𝑔𝑚𝑖 = 1 if technology g that produces product m is installed in entity i  

 

Auxiliary variables at objective functions  

𝑟𝑁𝑃𝑉 Risk-adjusted net present value  

𝐶𝐹𝑡𝑠 Cash flow in stage t under scenario s  

𝑁𝐸𝑡𝑠 Net earnings in stage t under scenario s 

𝐹𝐶𝐼𝛾 Fixed capital investment of investment 𝛾 

𝐷𝑃𝑡 Depreciation of the capital at stage t 

𝑠𝑖𝑛𝑜𝑟
𝑒𝑑            Normalized value of social impact related to the contribution to economic development   

subcategory 

𝑠𝑖𝑛𝑜𝑟
𝑔𝑟

               Normalized value of social impact related to the equal opportunities subcategory 

𝑠𝑖𝑛𝑜𝑟
𝑎𝑐𝑐            Normalized value of social impact related to the health and safety subcategory 

𝐸𝑛𝑣𝐼𝑚𝑝𝑎𝑐𝑡 Environmental impact indicator  

𝑆𝑜𝑐𝐵𝑒𝑛𝑒𝑓𝑖𝑡 Social impact indicator 

 

Constraints 

In order to better comprehend the applied constraints, these are grouped into five categories, namely: 

material balances; entity capacity; transportation; technology; and, non-anticipatively. These are thus 

defined and characterized as follows.  

Material Balances  

Material balance at the factories: 

𝑆𝑚𝑖(𝑡−1)𝑠 + ∑ 𝑃𝑚𝑔𝑖𝑡𝑠
𝑔:(𝑚,𝑔)∈𝐻𝑝𝑟𝑜𝑑

+ ∑ 𝑅𝑚𝑔𝑖𝑡𝑠
𝑔:(𝑚,𝑔)∈𝐻𝑟𝑒𝑚

= 𝑆𝑚𝑖𝑡𝑠 + ∑ 𝐵𝑂𝑀𝑚𝑛
𝑓

𝑛,𝑗:(𝑛,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝐹𝐹𝑃
𝑎:(𝑎,𝑛,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑋𝑛𝑎𝑖𝑗𝑡𝑠, 𝑡 ∈ 𝑇 ∧  𝑚

∈ 𝑀𝑓𝑝  ∧ 𝑖 ∈ 𝐼𝑓  ∧  𝑠 ∈ 𝑆 

            (2) 

∑ 𝑋𝑚𝑎𝑗𝑖𝑡𝑠
𝑗∈𝐼𝑠𝑢𝑝

𝑎:(𝑎,𝑚,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

= ∑ 𝐵𝑂𝑀𝑚𝑛𝑔
𝑝𝑟𝑜𝑑

(𝑛,𝑔)∈𝐻𝑝𝑟𝑜𝑑

𝑃𝑛𝑔𝑖𝑡𝑠 , 𝑚 ∈ 𝑀𝑟𝑚  ∧ 𝑖 ∈ 𝐼𝑓  ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (3) 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑗:(𝑚,𝑗,𝑖)∈𝐹𝐼𝑁𝐹𝑅𝑃
𝑎:(𝑎,𝑚,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

= ∑ 𝐵𝑂𝑀𝑚𝑛𝑔
𝑟𝑒𝑚

(𝑛,𝑔)∈𝐻𝑟𝑒𝑚

𝑅𝑛𝑔𝑖𝑡𝑠 , 𝑚 ∈ 𝑀𝑟𝑝  ∧ 𝑖 ∈ 𝐼𝑓  ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 
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            (4) 

Material balance at the warehouses: 

𝑆𝑚𝑖(𝑡−1)𝑠 + ∑ 𝐵𝑂𝑀𝑚𝑛

𝑛,𝑗:(𝑛,𝑗,𝑖)∈𝐹𝐼𝑁𝑊
𝑎:(𝑎,𝑛,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

𝑋𝑛𝑎𝑗𝑖𝑡𝑠 = 𝑆𝑚𝑖𝑡𝑠 + ∑ 𝐵𝑂𝑀𝑚𝑛

𝑛,𝑗:(𝑛,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝑊
𝑎:(𝑎,𝑛,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑋𝑛𝑎𝑖𝑗𝑡𝑠, 𝑡 ∈ 𝑇 ∧ ∈ (𝑀𝑓𝑝 ∪𝑀𝑟𝑝) ∧ 𝑖

∈ 𝐼𝑤 ∧  𝑠 ∈ 𝑆 

            (5) 

Cross-docking at the airports: 

∑ 𝐵𝑂𝑀𝑚𝑛

𝑛,𝑗:(𝑛,𝑗,𝑖)∈𝐹𝐼𝑁𝐴𝐼𝑅
𝑎:(𝑎,𝑛,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

𝑋𝑛𝑎𝑗𝑖𝑡𝑠 = ∑ 𝐵𝑂𝑀𝑚𝑛

𝑛,𝑗:(𝑛,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝐴𝐼𝑅
𝑎:(𝑎,𝑛,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑋𝑛𝑎𝑖𝑗𝑡𝑠,   𝑚 ∈ (𝑀𝑓𝑝 ∪ 𝑀𝑟𝑝)  ∧ 𝑖 ∈ 𝐼𝑎𝑖𝑟  ∧ 𝑡 ∈ 𝑇 ∧  𝑠

∈ 𝑆 

            (6) 

Cross-docking at the seaports: 

∑ 𝐵𝑂𝑀𝑚𝑛

𝑛,𝑗:(𝑛,𝑗,𝑖)∈𝐹𝐼𝑁𝑃𝑂𝑅𝑇
𝑎:(𝑎,𝑛,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

𝑋𝑛𝑎𝑗𝑖𝑡𝑠 = ∑ 𝐵𝑂𝑀𝑚𝑛

𝑛,𝑗:(𝑛,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝑃𝑂𝑅𝑇
𝑎:(𝑎,𝑛,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑋𝑛𝑎𝑖𝑗𝑡𝑠 ,   𝑚 ∈ (𝑀𝑓𝑝 ∪𝑀𝑟𝑝)  ∧ 𝑖 ∈ 𝐼𝑝𝑜𝑟𝑡  ∧ 𝑡 

∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (7) 

Demand and return at the markets: 

∑ 𝑋𝑚𝑎𝑗𝑖𝑡𝑠
𝑗:(𝑚,𝑖,𝑗)∈𝐹𝐼𝑁𝐶𝐹𝑃
𝑎:(𝑎,𝑚,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

= 𝑑𝑚𝑑𝑚𝑖𝑡𝑠 , 𝑖 ∈ 𝐼𝑐  ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (8) 

∑ 𝑋𝑚𝑎𝑗𝑖𝑡𝑠
𝑗:(𝑚,𝑖,𝑗)∈𝐹𝐼𝑁𝐶𝐹𝑃
𝑎:(𝑎,𝑚,,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

≥ 𝑟𝑒𝑡𝐹𝑚𝑠 ∑ 𝐵𝑂𝑀𝑚𝑛
𝑟𝑒𝑐𝑜𝑣𝑋𝑚𝑎𝑗𝑖(𝑡−1)𝑠

𝑛,𝑗:(𝑛,𝑗,𝑖)∈𝐹𝐼𝑁𝐶𝐹𝑃
𝑎:(𝑎,𝑛,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

, 𝑡 > 1 ∧ 𝑚 ∈ 𝑀𝑟𝑝  ∧  𝑖 ∈ 𝐼𝑐 ∧  𝑠 ∈ 𝑆 

            

            (9) 

∑ 𝑋𝑚𝑎𝑗𝑖𝑡𝑠
𝑗:(𝑚,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝐶𝑅𝑃
𝑎:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

≤ ∑ 𝐵𝑂𝑀𝑚𝑛
𝑟𝑒𝑐𝑜𝑣𝑋𝑚𝑎𝑗𝑖(𝑡−1)𝑠

𝑛,𝑗:(𝑛,𝑗,𝑖)∈𝐹𝐼𝑁𝐶𝐹𝑃
𝑎:(𝑎,𝑛,𝑗,𝑖)∈𝑁𝑒𝑡𝑃

, 𝑡 > 1 ∧ 𝑚 ∈ 𝑀𝑟𝑝  ∧  𝑖 ∈ 𝐼𝑐 ∧  𝑠 ∈ 𝑆 

            (10) 

Considering the constraints above, and according to Mota et al. (2018), constraint (2) models the 

material balance constraints at factories during each time unit. Hence, it assures that the existing stock 

of final products (first term of the equation) plus the new and remanufactured products (second and third 

equation terms, respectively) must equal the amount kept in stock plus the outgoing product flow. For 

sake of simplicity, the authors have not included this constraint for the first stage, and thus, when t = 1, 

the variable Smi (t - 1) should be replaced by parameter insmi, the initial stock of product m in entity i. 
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Additionally, both production and remanufacturing operations are taken into consideration by constraints 

(3) and (4), respectively. Hence, while the former sets the necessary amount of raw materials to be sent 

by suppliers, the latter relates to all ingoing flows of recovered products to the factory. 

On another note, the warehouse balance is assured by equation (5), where products kept in stock at the 

previous time unit plus the inbound flows must equal the current stock volume plus the outbound flows. 

As of the material balance constraints at factories, and considering the first stage (t = 1), the variable 

Smi (t - 1) should be replaced by parameter insmi.  

Furthermore, airports and seaports operate in a cross-docking mode, where the stocks amounts are not 

made available at these sites. Considering equations (6) and (7), these ensure that, for each product 

and time unit, the inbound flow at each location equals the outbound flow.  

As of the demand at markets, this must be totally satisfied, as staged through constraint (8). Additionally, 

the present model assumes that products have a usage period of a time unit, leading to having no 

returns available at stage t = 1. This is reflected in constraint (9), where the return amount is at least a 

fraction of the volume supplied in the previous time unit, and at most the quantity delivered to the 

markets, as provided in equation (10). 

Entity capacity constraints 

Supply capacity: 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑎,𝑗:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃
(𝑚,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝑆𝑈𝑃

 ≤  𝑠𝑐𝑚𝑖𝑠
𝑚𝑎𝑥𝑌𝑖 , 𝑖 ∈ 𝐼𝑠𝑢𝑝  ∧   𝑚 ∈ 𝑀𝑓𝑝  ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (11) 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑎,𝑗:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃
(𝑚,𝑖,𝑗)∈𝐹𝑂𝑈𝑇𝑆𝑈𝑃

 ≥  𝑠𝑐𝑚𝑖
𝑚𝑖𝑛𝑌𝑖 , 𝑖 ∈ 𝐼𝑠𝑢𝑝  ∧   𝑚 ∈ 𝑀𝑓𝑝  ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (12) 

Flow capacity: 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑎,𝑚,𝑗:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

 ≤  𝑒𝑐𝑖
𝑚𝑎𝑥𝑌𝑖 , 𝑖 ∈ 𝐼 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (13) 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑎,𝑚,𝑗:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

 ≤  𝑒𝑐𝑗
𝑚𝑎𝑥𝑌𝑗 , 𝑗 ∈ 𝐼 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (14) 

Stock capacity: 

𝑆𝑚𝑖𝑡𝑠  ≤  𝑖𝑐𝑚𝑖
𝑚𝑎𝑥𝑌𝑖 , 𝑚 ∈ 𝑀𝑓𝑝 ∧ 𝑖 ∈ (𝐼𝑓 ∪ 𝐼𝑤)  ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (15) 

𝑆𝑚𝑖𝑡𝑠  ≥  𝑖𝑐𝑚𝑖
𝑚𝑖𝑛𝑌𝑖 , 𝑚 ∈ 𝑀𝑓𝑝 ∧ 𝑖 ∈ (𝐼𝑓 ∪ 𝐼𝑤)  ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (16) 

Entity capacity: 
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𝑌𝐶𝑇𝑖𝑡𝑠 = ∑ 𝑎𝑝𝑢𝑟𝑚𝑋𝑚𝑎𝑗𝑖𝑡𝑠
𝑚,𝑎,𝑗:(𝑚,𝑎,𝑗)∈𝑁𝑒𝑡𝑃

+ ∑ 𝑎𝑝𝑢𝑚𝑆𝑚𝑖𝑡𝑠
𝑚:(𝑚,𝑖)∈𝑉

 , 𝑖 ∈ (𝐼𝑓 ∪ 𝐼𝑤)  ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

            (17) 

𝑌𝐶𝑖 ≥ 𝑌𝐶𝑇𝑖𝑡𝑠 , 𝑖 ∈ (𝐼𝑓 ∪ 𝐼𝑤) ∧  𝑠 ∈ 𝑆 

            (18) 

𝑌𝐶𝑖 ≤ 𝑒𝑎𝑖
𝑚𝑎𝑥𝑌𝑖  , 𝑖 ∈ (𝐼𝑓 ∪ 𝐼𝑤) 

            (19) 

𝑌𝐶𝑖 ≥ 𝑒𝑎𝑖
𝑚𝑖𝑛𝑌𝑖  , 𝑖 ∈ (𝐼𝑓 ∪ 𝐼𝑤) 

            (20) 

Entity existence constraints: 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑎,𝑚,𝑖,𝑡:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

 ≥ 𝑌𝑗 , 𝑗 ∈ 𝐼 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

       (21) 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑎,𝑚,𝑖,𝑡:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

 ≥ 𝑌𝑖 , 𝑖 ∈ 𝐼 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

       (22) 

Constraints (11) – (20) set capacity limits, namely: maximum and minimum supply of raw materials 

(equations (11) and (12) and; flow amounts between each pair of entities in the network (constraints 

(13) and (14)); and, minimum and maximum stock capacity at factories and warehouses (equations (15) 

and (16)). Considering this, it should also be noted that these constraints ensure the related variables 

can only differ from zero if the facilities integrate the supply chain, that is, when Yi = 1.  

Moreover, and while the above entities capacities are pre-established, the installation area of 

warehouses and factories is modelled differently. Thus said, and considering these two facilities, 

capacities are matter of decisions. Hence, with equation (17), the capacity required at each time unit at 

each facility is determined by ensuring that it is sufficient to accommodate the incoming flow and the 

current stock levels. Constraint (18) on the other hand, sets the maximum capacity needed over the 

time horizon. Considering this, it should be noted that, and according to Mota et al. (2018), the authors 

have followed a minmax approach, since variable YCi is minimized at the economic objective function 

(addressed below). As of the equations (19) and (20), these limit the installation area at each location, 

with a maximum and minimum, respectively.  

Additionally, an in order to guarantee that entities are only installed if there is material flow going through 

them, constraints (21) and (22) have been included in the model, which can also be portrayed as 

minimum flow constraints. Finally, for such an extension, one should define the minimum flow 

parameter, which should be multiplied to variable Yi (similarly to constraint (14)). 

Transportation constraints: 

Physical constraints: 

∑ 𝑋𝑚𝑎𝑗𝑖𝑡𝑠
𝑎,𝑗(𝑎,𝑚,𝑗,𝑖)∈𝑁𝑒𝑡𝑃
𝑗∈𝐼\(𝐼𝑎𝑖𝑟∪𝐼𝑠𝑢𝑝)

 ≥ ∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑎,𝑗(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑗∈𝐼𝑎𝑖𝑟

, 𝑚 ∈ (𝑀𝑓𝑝 ∪𝑀𝑟𝑝) ∧ 𝑖 ∈ 𝐼𝑎𝑖𝑟  ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 
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  (23) 

∑ 𝑋𝑚𝑎𝑗𝑖𝑡𝑠
𝑎,𝑗(𝑎,𝑚,𝑗,𝑖)∈𝑁𝑒𝑡𝑃
𝑗∈𝐼\(𝐼𝑝𝑜𝑟𝑡∪𝐼𝑠𝑢𝑝)

 = ∑ 𝑋𝑚𝑎𝑖𝑗𝑡
𝑎,𝑗(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑗∈𝐼𝑝𝑜𝑟𝑡

, 𝑚 ∈ (𝑀𝑓𝑝 ∪𝑀𝑟𝑝) ∧ 𝑖 ∈ 𝐼𝑝𝑜𝑟𝑡  ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

  (24) 

Necessary number of trips: 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑚:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

 ≤ 𝑐𝑡𝑎
𝑚𝑎𝑥𝑄𝑎𝑖𝑗𝑡𝑠 , (𝑎, 𝑖, 𝑗) ∈ 𝑁𝑒𝑡 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

     (25) 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑚:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

 ≥ 𝑐𝑡𝑎
𝑚𝑖𝑛𝑄𝑎𝑖𝑗𝑡𝑠, (𝑎, 𝑖, 𝑗) ∈ 𝑁𝑒𝑡 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

     (26) 

𝑄𝑎𝑖𝑗𝑡𝑠  ≤ 𝐵𝑖𝑔𝑀. 𝑌𝑖 , (𝑎, 𝑖, 𝑗) ∈ 𝑁𝑒𝑡 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

        (27) 

𝑄𝑎𝑖𝑗𝑡𝑠  ≤ 𝐵𝑖𝑔𝑀. 𝑌𝑗 , (𝑎, 𝑖, 𝑗) ∈ 𝑁𝑒𝑡 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

        (28) 

Contracted capacity with air and sea carrier: 

∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑚:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

 ≤ 𝑐𝑐𝑎𝑎
𝑚𝑎𝑥 , (𝑎, 𝑖, 𝑗) ∈ 𝑁𝑒𝑡 ∧ 𝑎 ∈ (𝐴𝑝𝑙𝑎𝑛𝑒 ∪ 𝐴𝑏𝑜𝑎𝑡) ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

   (29) 

Necessary number of transportation modes: 

𝐾𝑇𝑎𝑖𝑡  =
∑ 2. 𝑑𝑖𝑗𝑄𝑎𝑖𝑗𝑡𝑠𝑗

𝑎𝑣𝑠.𝑚ℎ𝑤.𝑤𝑝𝑡
, (𝑎, 𝑖, 𝑗) ∈ 𝑁𝑒𝑡 ∧ 𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘 ∧  𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

      (30) 

𝐾𝑇𝑎𝑖  ≥ 𝐾𝑇𝑎𝑖𝑡𝑠 , 𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘 ∧ 𝑖 ∈ 𝐼 ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

        (31) 

∑ 𝑓𝑡𝑐𝑎𝐾𝑎𝑖
𝑎: 𝑎∈𝐴𝑡𝑟𝑢𝑐𝑘

𝑖: 𝑖∈𝐼

 ≤ 𝑖𝑛𝑣𝑡 

         (32) 

𝐾𝑎𝑖  ≤ 𝐵𝑖𝑔𝑀. 𝑌𝑖 , 𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘 ∧ 𝑖 ∈ 𝐼 

        (33) 

𝐾𝑎𝑖  ≤ 𝐵𝑖𝑔𝑀. ∑ 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑚,𝑗:(𝑎,𝑚,𝑖,𝑗)∈𝑁𝑒𝑡𝑃

𝑡∈𝑇

, 𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘 ∧ 𝑖 ∈ 𝐼 ∧  𝑠 ∈ 𝑆 

      (34) 

Considering the above, constraints (23) and (24) state that the material flow entering an airport/seaport, 

respectively must be transported by plane/boat to another airport/seaport, respectively. Furthermore, 
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the network superstructure, established when defining the provided sets, ensures that intercontinental 

trips can only make use of air or sea transportation.  

Furthermore, through constraint (25) it is ensured that the number of trips between entities times the 

capacity of the corresponding transportation mode is larger than the flow between entities. Additionally, 

equation (26) imposes minimum cargo in each transportation mode.  

On another note, constraints (27) and (28) assure that variable Qaijt is only activated if both the entities 

of origin and destination are installed, respectively. 

Considering equation (29), this establishes that the transportation performed by either air or sea in each 

stage is limited by a contracted capacity with the airline or freighter, respectively.  

Additionally, constraint (30) defines an upper bound for the number of trucks in each entity of origin in 

each stage, Kait. In the model, each truck is assumed to be assigned to one truck driver. Therefore, 

trucks must be enough to obey the European Union Rules on Driving Hours, which state that an average 

maximum of 45 h per week is allowed. The denominator of the equation, on the other hand, reflects the 

number of kilometres that are actually travelled per stage, having as starting point entity i and 

considering that trucks must return to the entity of origin. Similarly to the definition of the entities’ 

capacities, equation (31) defines the number of trucks necessary in each stage over the time horizon. 

Moreover, and following the same pattern as in entities capacities, the minmax approach has been 

followed in order to model the number of workers allocated to transportation activities. Constraint (32) 

on the other hand, imposed a maximum investment in road transportation, defined by the company 

decision makers. Finally, and while constraint (33) ensures trucks are only purchased if the entity of 

origin is installed, equation (34) guaranties trucks are only purchased if there is flow to be transported 

with those same trucks.  

Technology constraints: 

Technology capacity: 

𝑃𝑚𝑔𝑖𝑡𝑠  ≤ 𝑝𝑐𝑔
𝑚𝑎𝑥𝑍𝑔𝑚𝑖 , 𝑖 ∈ 𝐼𝑓 ∧ (𝑚, 𝑔) ∈ 𝐻𝑝𝑟𝑜𝑑 ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

      (35) 

𝑅𝑚𝑔𝑖𝑡𝑠  ≤ 𝑝𝑐𝑔
𝑚𝑎𝑥𝑍𝑔𝑚𝑖 , 𝑖 ∈ 𝐼𝑓 ∧ (𝑚, 𝑔) ∈ 𝐻𝑟𝑒𝑚 ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

      (36) 

𝑃𝑚𝑔𝑖𝑡𝑠  ≥ 𝑝𝑐𝑔
𝑚𝑖𝑛𝑍𝑔𝑚𝑖 , 𝑖 ∈ 𝐼𝑓 ∧ (𝑚,𝑔) ∈ 𝐻𝑝𝑟𝑜𝑑 ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

      (37) 

𝑅𝑚𝑔𝑖𝑡𝑠  ≥ 𝑝𝑐𝑔
𝑚𝑖𝑛𝑍𝑔𝑚𝑖 , 𝑖 ∈ 𝐼𝑓 ∧ (𝑚, 𝑔) ∈ 𝐻𝑟𝑒𝑚 ∧ 𝑡 ∈ 𝑇 ∧  𝑠 ∈ 𝑆 

      (38) 

Technology installation: 

∑ 𝑍𝑔𝑚𝑖
𝑔:(𝑚,𝑔)∈𝐻𝑝𝑟𝑜𝑑

 ≤ 𝑌𝑖 , 𝑚 ∈ 𝑀𝑓𝑝 ∧ 𝑖 ∈ 𝐼𝑓  

       (39) 

∑ 𝑍𝑔𝑚𝑖
𝑔:(𝑚,𝑔)∈𝐻𝑟𝑒𝑚

 ≤ 𝑌𝑖 , 𝑚 ∈ 𝑀𝑓𝑝 ∧ 𝑖 ∈ 𝐼𝑓 

        (40) 
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Equations (35) – (40) represent the technology constraints. Particularly, equations (35) and (36) model 

production and remanufacturing maximum capacity, respectively, while constraints (37) and (38) impose 

minimum production levels in each stage. Additionally, they also ensure that, if the technology is not 

established (Zmgi = 0), the corresponding manufacturing and remanufacturing volumes are set to zero. 

Consequently, at most one technology can be allocated to open facilities (when Y i = 1), for both 

production and remanufacturing technologies, as stated in equations (39) and (40). It should also be 

noted that different technologies, i.e., production/remanufacturing processes, can differ in the number 

of necessary workers to operate them, production/remanufacturing capacity, environmental impact, and 

involved costs.  

Non-anticipatively constraints: 

𝑆𝑚𝑖𝑡𝑠 = 𝑆𝑚𝑖𝑡𝑠′ , 𝑃𝑚𝑔𝑖𝑡𝑠 = 𝑃𝑚𝑔𝑖𝑡𝑠′ , 𝑅𝑚𝑔𝑖𝑡𝑠 = 𝑅𝑚𝑔𝑖𝑡𝑠′ , 𝑋𝑚𝑎𝑖𝑗𝑡𝑠 = 𝑋𝑚𝑎𝑖𝑗𝑡𝑠′ , 𝑌𝐶𝑇𝑖𝑡𝑠 = 𝑌𝐶𝑇𝑖𝑡𝑠′ ,

𝐾𝑎𝑖𝑡𝑠 = 𝐾𝑎𝑖𝑡𝑠′ , 𝑄𝑎𝑖𝑗𝑡𝑠 = 𝑄𝑎𝑖𝑗𝑡𝑠′ , 

,  

𝑚 𝜖 𝑀, 𝑖, 𝑗 𝜖 𝐼, 𝑔 𝜖 𝐺, 𝑎 𝜖 𝐴, 𝑡 𝜖 𝑇      ∧      𝑠, 𝑠′ 𝜖 𝑆 𝑥 (𝑠 ≠  𝑠′) 

    (41) 

𝑃𝑚𝑔𝑖𝑡𝑠  , 𝑅𝑚𝑔𝑖𝑡𝑠  , 𝑋𝑚𝑎𝑖𝑗𝑡𝑠  , 𝑆𝑚𝑖𝑡𝑠  , 𝑌𝐶𝑖  , 𝑌𝐶𝑇𝑖𝑡𝑠 , 𝐾𝑇𝑎𝑖𝑡𝑠  ≥ 0 

𝐾𝑎𝑖  , 𝑄𝑎𝑖𝑗𝑡𝑠  ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝑌𝑖  , 𝑍𝑔𝑚𝑖  ∈ {0,1} 

       (42) 

Equation (41) represents the non-anticipatively constraints of the stochastic dynamic model, necessary 

when modelling under the multistage concept, by ensuring that scenarios with a common history must 

have the same set of decisions and that future outcomes cannot be anticipated. Lastly, the decision 

variables domains are provided in constraint (42).  

 

Objective Functions 

Economic Objective Function 

The economic objective function provided in equation (43) is obtained through the maximization of the 

expected risk-adjusted NPV (rNPV) of all scenarios considered. Hence, and through this adaptation of 

the commonly applied NPV, the rNPV accounts for the associated economic risk often present on future 

cash flows associated with the design and planning of a sustainable supply chain, thus leading to an 

extended work of Mota et al. (2018)’s findings. 

𝑚𝑎𝑥 𝑟𝑁𝑃𝑉 =  ∑𝜌𝑠
𝑠

 (∑
𝐶𝐹𝑡𝑠. 𝜕

(1 +  𝑖𝑟)𝑡
𝑡 𝜖 𝑇

 −  ∑𝐹𝐶𝐼𝛾
𝛾

)  

            (43) 

𝐶𝐹𝑡𝑠  =  {

                    𝑁𝐸𝑡𝑠 ,          𝑡 =  1, . . . , 𝑁𝑇 − 1 ∧  𝑠 ∈  𝑆

𝑁𝐸𝑡𝑠  +  ∑(𝑠𝑣𝛾𝐹𝐶𝐼𝛾)

𝛾

,         𝑡 =  𝑁𝑇 ∧  𝑠 ∈  𝑆      

            (44) 
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𝑁𝐸𝑡𝑠  =  (1 −  𝑡𝑟) 

[
 
 
 
 

 ∑ 𝑝𝑠𝑢𝑚𝑋𝑚𝑎𝑖𝑗𝑡𝑠  
(𝑚,𝑖,𝑗) ∈ 𝐹𝐼𝑁𝐶𝐹𝑃
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

− 

(

 
 

∑ 𝑟𝑚𝑐𝑚𝑖𝑋𝑚𝑎𝑖𝑗𝑡𝑠
(𝑚,𝑖,𝑗) ∈ 𝐹𝑂𝑈𝑇𝑆𝑈𝑃𝑅𝑀
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

 + ∑ 𝑜𝑝𝑐𝑔𝑃𝑚𝑔𝑖𝑡𝑠
(𝑚,𝑔) ∈ 𝐻𝑝𝑟𝑜𝑑

𝑖 ∈ 𝐼𝑓

 

+ ∑ 𝑟𝑝𝑐𝑚𝑋𝑚𝑎𝑖𝑗𝑡𝑠
(𝑚,𝑖,𝑗) ∈ 𝐹𝑂𝑈𝑇𝐶𝑅𝑃
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

+ ∑ 𝑜𝑝𝑐𝑔𝑅𝑚𝑔𝑖𝑡𝑠
(𝑚,𝑔) ∈ 𝐻𝑟𝑒𝑚

𝑖 ∈ 𝐼𝑓

 

+  ∑ (
𝑎𝑣𝑐𝑎
100

 𝑓𝑝 +  𝑣𝑐𝑚) . 2𝑑𝑖𝑗𝑄𝑎𝑖𝑗𝑡𝑠  +  ∑ 𝑡𝑐𝑎𝑠 . 𝑝𝑤𝑚 . 𝑑𝑖𝑗 . 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

𝑎 ∈ (𝐴𝑝𝑙𝑎𝑛𝑒 ∪ 𝐴𝑏𝑜𝑎𝑡)

 
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃
𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘

+ ∑ ℎℎ𝑐𝑗 . 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

(𝑗 ∈ 𝐼𝑎𝑖𝑟 ∧ 𝑖 ∉𝐼𝑎𝑖𝑟)  ∪ (𝑗 ∈ 𝐼𝑝𝑜𝑟𝑡 ∧ 𝑖 ∉ 𝐼𝑝𝑜𝑟𝑡)

 +  ∑ 𝑐𝑓𝑝𝑖 . 𝑌𝑖
𝑖 ∈ 𝐼𝑎𝑖𝑟 ⋃ 𝐼𝑏𝑜𝑎𝑡

 

+  ∑ 𝑠𝑐𝑚𝑆𝑚𝑖𝑡𝑠
(𝑚,𝑖) ∈ 𝑉

 +  ∑ 𝑤𝑖 . 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑌𝑖
𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑤

 +  ∑ 𝑤𝑝𝑠𝑞. 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑌𝐶𝑖
𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑤

 

+  ∑ 𝑤𝑔. 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝑍𝑚𝑔𝑖
(𝑚,𝑔) ∈ 𝐻
𝑖 ∈ 𝐼𝑓

 +  ∑ 𝑤𝑎. 𝑙𝑐𝑖 . 𝑤𝑤ℎ.𝑤𝑝𝑡. 𝐾𝑎𝑖
𝑖 ∈ 𝐼

𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘 )

 
 

]
 
 
 
 

 +  𝑡𝑟. 𝐷𝑃𝑡 

             (45) 

𝐷𝑃𝑡  =  ∑𝐷𝑃𝛾𝑡𝐹𝐶𝐼𝛾
𝛾

 

              (46) 

𝐹𝐶𝐼𝛾  =  

{
 
 
 
 

 
 
 
 ∑ 𝑠𝑞𝑚𝑐𝑖𝑠 . 𝑌𝐶𝑖
𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑤

 , 𝛾 =  1

∑ 𝑡𝑒𝑐𝑔𝑍𝑔𝑚𝑖  
(𝑚,𝑔)∈𝐻
𝑖 ∈ 𝐼𝑓

 , 𝛾 =  2

∑ 𝑓𝑡𝑐𝑎𝑎 . 𝐾𝑎𝑖
(𝑎,𝑖,𝑗)∈𝑁𝑒𝑡
𝑎 ∈ 𝐴𝑡𝑟𝑢𝑐𝑘

 , 𝛾 =  3

 

             (47) 

According to equation (43), the risk-adjusted Net Present Value (rNPV) is calculated similarly to the 

commonly applied NPV, being the only difference the parameter 𝜕, which represents the cash flow 

certainty estimation percentage, that is, the certainty level in reaching expected future cash flows, 

calculated as the ratio of the current risk meditated and the risk meditated after several stages t have 

passed with success (Stewart, Allison, and Johnson 2001). Hence, and considering the typical NPV 

formula, the remaining represents the sum of the discounted cash flows of each stage, at interest rate 

𝑖𝑟. Thus, and in order to obtain the necessary data, auxiliary equations have been considered, namely 

equation (44), which represents the cash flow calculation for each stage, obtained through the net 

earnings, 𝑁𝐸𝑡𝑠 for every stage excluding the final one, where the recovery of the salvage value, 𝑠𝑣𝛾, of 

each type of investment, 𝐹𝐶𝐼𝛾, is also accounted for. Additionally, the net earnings for each stage are 

considered in equation (45), and thus obtained through the difference between incomes and overall 
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costs, where the former is represented by the amount of products sold times the price per unit, 𝑝𝑠𝑢𝑚, 

and the latter by the following cost considerations: 

▪ raw material costs (first term) – amount of products purchased from suppliers times the unit raw 

material cost, 𝑟𝑚𝑐𝑚; 

▪ operating production costs (second term) – amount of final products produced, 𝑃𝑚𝑔𝑖𝑡𝑠, times the 

unitary operating costs of each available production technology, 𝑜𝑝𝑐𝑔; 

▪ product recovery costs (third term) – amount of end-of-life products recovered from clients times 

the unit recovered product cost, 𝑟𝑝𝑐𝑚; 

▪ remanufacturing operating costs (fourth term) – amount of final products obtained through 

remanufacturing, 𝑅𝑚𝑔𝑖𝑡𝑠, times the unitary operating costs of each available remanufacturing 

technology, 𝑜𝑝𝑐𝑔; 

▪ transportation costs for road transportation (fifth term) – number of trips between entities, 𝑄𝑎𝑖𝑗𝑡𝑠, 

times twice the distance travelled, 2𝑑𝑖𝑗 , in order to account for the round trip, times the 

transportation cost per km, given by the vehicle average fuel consumption, 𝑎𝑣𝑐𝑎, the fuel price, 

𝑓𝑝, and the vehicle maintenance costs, 𝑣𝑚𝑐; 

▪ transportation costs for air and sea transportation (sixth term) – flow of products transported 

through transportation mode a, 𝑋𝑚𝑎𝑖𝑗𝑡𝑠, times the transportation cost per kg.km, 𝑡𝑐𝑎, times the 

weight of each unit of product transported, 𝑝𝑤𝑚, times the distance travelled, 𝑑𝑖𝑗; 

▪ hub terminal handling costs (seventh term) – flow of products through hub terminals at the 

airports/seaports times the unit handling costs at such terminals, ℎℎ𝑐; 

▪ airline/freighter contracted costs (eight term) – contracted costs with the airliner/freighter, 𝑐𝑓𝑝𝑖, 

for the allocated transportation capacity and/or for hub terminal use per stage, assuming that a 

contract is established with companies operating at hub terminals; 

▪ inventory costs (ninth term) – amount of product in stock, 𝑆𝑚𝑖𝑡𝑠, times the unitary stock cost, 

𝑠𝑐𝑚; 

▪ labour costs at entities (tenth and eleventh terms), labour costs for production and 

remanufacturing technologies (twelfth term), and labour costs for owned transportation modes, 

namely road transportation (thirteenth term) – varying costs according to the fixed (𝑤𝑖) and 

variable (𝑤𝑝𝑠𝑞) number of workers necessary at each entity, the number of workers required 

for each technology (𝑤𝑔 ), and to the number of workers per transportation mode (𝑤𝑎 ), 

respectively. Additionally, the labour cost at each location, 𝑙𝑐𝑖, the weekly working hours, 𝑤𝑤ℎ, 

and the number of weeks per stage, 𝑤𝑝𝑡, are also considered in these calculations. 

As of the final term of equation (45), it describes the depreciation of the invested capital, 𝐷𝑃𝑡𝑠, with 

the tax rate represented by 𝑡𝑟 . Subsequently, the depreciation is calculated for each type of 

investment considered, 𝛾, as represented in equation (46). 

Finally, the fixed capital investment, 𝐹𝐶𝐼, is described in equation (47) and thus obtained considering 

the following terms:  
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▪ facilities investment (first term) – necessary installation area, 𝑌𝐶𝑖 , times the varying 

construction costs, which depend on the facilities’ locations, 𝑠𝑞𝑚𝑐𝑖; 

▪ technologies investment (second term) – number of installed technologies times the 

installation cost of each technology, 𝑡𝑒𝑐𝑔; 

▪ transportation links investment (third term) – fixed investment in road transportation, 𝑓𝑡𝑐𝑎, 

assuming the company’s fleet purchase. 

Environmental Objective Function 

The environmental objective function is obtained through the minimization of the environmental impact 

represented in equation (48), and modelled by the ReCiPe methodology, thus following the work 

developed by Mota et al. (2018), and according to subchapter 4.2’s main findings. Therefore, and as the 

functional unit is the supply chain, the aggregated obtained results should only be used to compare 

distinctive supply chain designs and decisions and not as a tool to accurately determine the 

environmental impact of the supply chain.  

𝑚𝑖𝑛 𝐸𝑛𝑣𝐼𝑚𝑝𝑎𝑐𝑡 =  ∑𝜌𝑠
𝑠

(

  
 
∑𝜂𝑐
𝑐

(

 
 

∑ 𝑒𝑖𝑚𝑔𝑐 . 𝑝𝑤𝑚. (𝑃𝑚𝑔𝑖𝑡𝑠  +  𝑅𝑚𝑔𝑖𝑡𝑠)
𝑡 ∈ 𝑇 ,𝑖 ∈ 𝐼𝑓
(𝑚,𝑔) ∈ 𝐻

  

+  ∑ 𝑒𝑖𝑎𝑐 . 𝑝𝑤𝑚 . 𝑑𝑖𝑗 . 𝑋𝑚𝑎𝑖𝑗𝑡𝑠
𝑡 ∈ 𝑇

(𝑎,𝑚,𝑖,𝑗) ∈ 𝑁𝑒𝑡𝑃

 +  ∑ 𝑒𝑖𝑖𝑐 . 𝑌𝐶𝑖
𝑖 ∈ 𝐼𝑓 ∪ 𝐼𝑤

)

 
 

)

  
 

 

             (48) 

Thus, and according to equation (48), the environmental impact of four supply chain activities is 

calculated for each midpoint category c, namely: 

▪ production and remanufacturing environmental impact (first term) – environmental impact per 

kg produced of remanufactured with technology g, 𝑒𝑖𝑚𝑔𝑐 , times the weight of product m times 

the amount of final products produced, 𝑃𝑚𝑔𝑖𝑡𝑠, or remanufactured, 𝑅𝑚𝑔𝑖𝑡𝑠; 

▪ transportation environmental impact (second term) – environmental impact per kg.km 

transported with transportation mode a, 𝑒𝑖𝑎𝑐 , times the weight of each unit of product 

transported, 𝑝𝑤𝑚, times the distance travelled, 𝑑𝑖𝑗, times the product flow, 𝑋𝑚𝑎𝑖𝑗𝑡𝑠; 

▪ entity installation environmental impact (third term) – environmental impact per square meter of 

entity i installed, 𝑒𝑖𝑖𝑐, times the installed area, 𝑌𝐶𝑖. 

Social Objective Function 

The social objective function takes into consideration the main findings described in subchapter 4.2, 

through the application of the SLCA, the indicators (i.e., subcategories) defined and proposed by Benoit-

Norris (2013) (Appendix B), and a critical analysis on the relevance of each for the social assessment. 

Thus, this social analysis can easily be extended to any other studying focus, by adding and adapting 

the most appropriate indicators for the case, while considering the list provided of well-defined 

subcategories, as well as the necessary data collection and viability for each.  
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Considering this, and following the described steps to conduct a proper SLCA, the goal of the present 

social study is to provide the sustainable supply chain model formulation with a proper mechanism to 

evaluate the social pillar while applying an adequate methodology that, even though is yet to be fully 

developed, can bring great importance to the model. Hence, three subcategories have been selected 

for this analysis and thus concern two distinctive stakeholders: (i) stakeholder workers, with focus on 

both equal opportunities/discrimination, and health and safety indicators; and, (ii) stakeholder society, 

with the incorporation of the contribution to economic development subcategory.  

The choice of each subcategory indicated highly focuses on the indicators overall relevance in any 

sustainable supply chain evaluation. Saying this, today’s society heavily struggles to fight discrimination, 

namely gender discrimination, an issue still present worldwide, even in the most developed countries 

(United Nations Developments Report 2018). Thus, the wage level between genders ratio has been 

selected as the most appropriate indicator to use to evaluate this problem, since it better portrays the 

discrepancy between both genders. Additionally, the health and safety of workers has also been 

selected as a relevant social problem to analyse, through the occurred number of injuries and accidents. 

This choice of analysis aims to appropriately study the workers safety, and whether or not companies 

are taking every measure to ensure it, given that large amounts of accidents may be a signal of poor 

safety concerns. Finally, the contribution to the economic development indicator intents to acknowledge 

the positive impact of establishing entities in certain areas and countries, and consequently, on the 

inhabitants of such region.   

Therefore, the above-mentioned subcategories are incorporated into one social objective function, 

obtained through the maximization of the social benefit, as represented in equation (49).  

𝑚𝑎𝑥 𝑆𝑜𝑐𝐵𝑒𝑛𝑒𝑓𝑖𝑡 =∑𝜌𝑠
𝑠

( 𝑤𝑒𝑑 . 𝑠𝑖𝑛𝑜𝑟
𝑒𝑑  +  wgr . 𝑠𝑖𝑛𝑜𝑟

𝑔𝑟
 −  𝑤𝑎𝑐𝑐 . 𝑠𝑖𝑛𝑜𝑟

𝑎𝑐𝑐)  

=∑𝜌𝑠
𝑠

(𝑤𝑒𝑑 .  
∑

fsci
tfvi

𝑒𝑣𝑖(1 − 𝑟𝑑𝑖). 𝑌𝑖i ∈ 𝐼𝑓∪𝐼𝑤
  −  𝑠𝑖𝑚𝑖𝑛

𝑒𝑑

𝑠𝑖𝑚𝑎𝑥
𝑒𝑑  −  𝑠𝑖𝑚𝑖𝑛

𝑒𝑑  
  

+  𝑤𝑔𝑟 .  
∑ 𝑐𝑒𝑖 .

𝑓𝑎𝑤𝑖
𝑚𝑎𝑤𝑖

. 𝑌𝑖i ∈ 𝐼𝑓∪𝐼𝑤
  −  𝑠𝑖𝑚𝑖𝑛

𝑔𝑟

𝑠𝑖𝑚𝑎𝑥
𝑔𝑟

 −  𝑠𝑖𝑚𝑖𝑛
𝑔𝑟
 

+  𝑤𝑎𝑐𝑐 .
𝑠𝑖𝑚𝑎𝑥
𝑎𝑐𝑐  −    ∑

fsci
tfvi

rai. 𝑌𝑖i ∈ 𝐼𝑓∪𝐼𝑤

𝑠𝑖𝑚𝑎𝑥
𝑎𝑐𝑐  −  𝑠𝑖𝑚𝑖𝑛

𝑎𝑐𝑐  
 )  

             (49) 

Hence, and according to equation (49), the social benefit is calculated taking into account the following 

subcategories and subsequent developed indicators: 

▪ contribution to economic development (first term) – aggregation factor of each entity i, 
fsci

tfvi
, times 

the difference between the economic value of each entity (€), 𝑒𝑣𝑖, and the economic value of 

each entity times the regional development level of the corresponding area, 𝑟𝑑𝑖; 

▪ equal opportunities/discrimination (second term) – measured through the wage level between 

genders ratio, calculated by the multiplication of the contribution factor of each entity, 𝑐𝑒𝑖, with 

the ratio of the female average wage (€), 𝑓𝑎𝑤𝑖, and the male average wage (€), 𝑚𝑎𝑤𝑖, per entity 

i; 
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▪ health and safety of workers (third term) – measured through the number of injuries and 

accidents, obtained by the aggregation factor of each entity i, 
fsci

tfvi
, times the number of accidents 

reported per location i, rai.  

Considering the above, and in order to distinct both the positive and negative impacts of each indicator 

considered, different signals have been assigned to the different subcategories chosen. Thus, while 

both the contribution to economic development, and the equal opportunities/discrimination indicators 

have been considered in the equation with a plus signal (“+”), in order to have the highest value for each 

as possible, the health and safety of workers subcategory has been given a minus signal (“-“), so as to 

minimize the number of accidents in the workplace.  

Moreover, it is clear all indicators have been multiplied by either an aggregation factor, 
fsci

tfvi
, or by a 

contribution factor, 𝑐𝑒𝑖.  According to Popovic et al. (2018), these are necessary so as to relate the 

obtained value of the indicator to the actual size and impact of each entity in the overall network. Thus, 

the aggregation factor represents the ratio between the entity’s contribution to the supply chain,  fsci, 

(e.g.: production volume, turnover) and the overall total value in such entity, tfvi, (e.g.: total production, 

turnover). The contribution factor, 𝑐𝑒𝑖, on the other hand, are commonly determined by the entity itself, 

however, some other possibilities rely on the turnover that the supply chain entity makes to the overall 

supply chain (Schöggl, Fritz, and Baumgartner 2016). 

On another note, one should notice that all three social indicators have been incorporated into one single 

social objective function. This choice, over the possibility of studying each indicator separately, aims to 

tackle several issues, being one of them the avoidance of having one social network for each indicator. 

Hence, instead of having, in this case, three separate social networks, only one overall social network 

is given, thus preventing the decision-maker to ultimately having to choose one social network, related 

to one specific indicator, over the remaining ones, upon having to evaluate all three objective functions 

(economic, environmental, and social) together, since there is not an entirely logical or unbiased answer 

for such decision. Moreover, another valid point that lead into the development of one overall social 

objective function is aligned with the goal of having a properly designed SLCA closest to the LCA 

methodology as much as possible. Hence, and given that the original LCA seeks for a single-score for 

the environmental impact assessment, it is correct to have the social LCA following the same line of 

thought and hence having a single-score solution to properly evaluate the social pillar of sustainability.  

Therefore, in order to do so, and aligned with step three of the LCA methodology, all social indicators 

must be normalized, that is, having their originally obtained value translated into a new value, so as to, 

instead of having incompatible and distinctive types of values, one can have a common range for all. In 

order to do so, the decision-maker must have sufficient knowledge concerning the minimum, 𝑠𝑖𝑚𝑖𝑛
∗ , and 

maximum, 𝑠𝑖𝑚𝑎𝑥
∗ , values each indicator can reach within their company. Thus, the normalization of each 

indicator follows the below mentioned expressions, used when minimization and maximization are 

desired, respectively (Ghaderi et al. 2018; Pishvaee, Razmi, and Torabi 2014): 

▪ 𝑠𝑖𝑛𝑜𝑟
∗  =

𝑠𝑖∗ − 𝑠𝑖𝑚𝑖𝑛
∗

𝑠𝑖𝑚𝑎𝑥
∗  − 𝑠𝑖𝑚𝑖𝑛

∗  
 ; 
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▪ 𝑠𝑖𝑛𝑜𝑟
∗  =

𝑠𝑖𝑚𝑎𝑥
∗ − 𝑠𝑖∗ 

𝑠𝑖𝑚𝑎𝑥
∗  − 𝑠𝑖𝑚𝑖𝑛

∗  
 .  

Finally, once all indicators have been normalized, weights are assigned according to step four of the 

LCA methodology. Therefore, and considering equation (49), these are multiplied with each 

corresponding normalized social impact value obtained. However, and even though this is a logical step 

to follow in order to consider the impact of each indicator differently, depending on its core and 

importance, it should be noted that, as of today, all weighting values are to be assigned by the decision-

maker according to their beliefs and common sense, which may, at times, be somehow subjective.   

5.3. Chapter Final Remarks 

The present chapter builds on the several challenges identified concerning the subject in study, that is, 

the modelling of a decision-support tool for the design and planning of sustainable supply chains under 

uncertainty. Thus, a mathematical formulation has been provided for several key points, such as the 

integrated supply chain design and planning optimizations model that incorporates numerous different 

interconnected supply chain decisions, namely: supplier selection; raw material purchase planning; 

facility location and capacity installation; technology selection; production and remanufacturing planning; 

product recovery strategies; transportation network definition; and, inventory planning.  

Additionally, the demand uncertainty incorporation has also been accounted for, through the application 

of the stochastic dynamic optimization approach based on the scenario tree concept, where nodes 

representing each stage of the scenario tree are considered. 

Finally, three distinctive objective functions have been presented in order to consider all three pillars of 

sustainability. Thus, the economic pillar has been accounted for through the application of the risk-

adjusted NPV, in order to assess the economic risk associated. On the other hand, the environmental 

concerns have been tackled through the application of the Life Cycle Assessment, an integrated 

approach for the environmental valuation. Finally, the social pillar has been studied based on the fairly 

recently developed SLCA, an integrated approach based on the already well-established LCA, and 

whose focus is the social aspects that must be considered when aiming for a sustainable supply chain. 
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6. MODEL VALIDATION & RESULTS ANALYSIS  

The present chapter focuses on the application of the formulated model to a representative case-study 

of the Calzedonia Group. Thus, the obtained results of its implementation are analysed and discussed 

in order to provide valuable conclusions and relevant insights on the work developed.   

This chapter is organized as follows. Section 6.1 focuses on the case-study definition and 

characterization. In section 6.2, the obtained results are analysed and discussed. Lastly, in section 6.3, 

the chapter final remarks are stated. 

6.1. Case-Study Definition & Characterization 

The model presented in chapter 5 is now applied into a representative case-study so as to serve as a 

basis for results analysis and, consequently, model validation. Therefore, in the present chapter, a study 

concerning the supply chain network of Calzedonia Group, an Italian company focused on the apparel 

industry, is performed based on the company’s provided reports of year 2019, as well as on further 

available and public information provided by the group. It should be noted, however, that due to the lack 

of substantial data, the present case-study serves only as a representative study of the group’s network. 

Calzedonia Group comprises seven distinctive brands, namely: (i) Calzedonia, the historical brand of 

the group, whose focus in mainly on the socks sector, and which is present in 53 countries across de 

world; (ii) Intimissimi Italian Lingerie, a brand positioned in the lingerie and underwear market 

established in a total of 47 countries; (iii) Intimissimi Uomo, a fairly recent underwear brand created 

specifically for the needs of male customers, established in a total of 8 countries worldwide; (iv) Tezenis 

Underwear, a brand focused on affordable and trendy underwear present 31 countries; (v) Falconeri 

Superior Cashmere, a brand focused on creating top quality cashmere knitwear, established in 17 

countries across the world; (vi) Atelier Emé, with a strong focus on wedding and ceremonial dresses, 

and with only 2 stores to date; and, (vii) Signorvino, the most particular brand of the group, as its market 

concerns Italian wines across 17 distinctive stores (Group Calzedonia 2019).  

When looking further into the details concerning the group’s supply chain network, it is clear that 

Calzedonia Group has a strong presence worldwide, particularly within the European region, where the 

company holds more than 4500 stores. Henceforth, and given its large presence and focus on the 

European market, the present representative case-study focuses on the European region, and 

particularly in the set of countries where the brand has its strongest presence. Additionally, from 

Calzedonia Group large range of brands, only two have been considered, namely Calzedonia and 

Tezenis Underwear. This decision is supported by the fact that these represent the vast majority of 

stores across the European region, while having a fairly compatible array of products.  

Considering this, and in order to select the set of countries that represent the company’s strongest 

presence among the Calzedonia and Tezenis Underwear stores array, the approximate total number of 

stores for both brands combined have been accounted for. From these, and according to Figure 24, all 

countries that comprise, at least 100 stores of both brands, have been selected as vital for this analysis, 

leading to a total of six markets. It should be noted that, even though the approximate total number of 

stores in Poland is less than 100 (99 stores), this country has been considered nonetheless, due to clear 
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values approximation. Finally, and as depicted in Figure 24, the products considered in the study 

represent a standard pair of cotton mid-calf socks, as well as a pair of seamless totally invisible sheer 

tights, two widely sold products worldwide under both of these brands, and thus clear key contributors 

for this study. 

 

Figure 24 - Calzedonia Group case-study general considerations 

As depicted in Figure 25, and based on Group (2019)’s main findings, the Calzedonia Group supply 

chain network, apart from the already selected markets, has been defined as follows: (i) two suppliers, 

Italy and China; (ii) three factories, located in Avio (Italy), Grissi (Italy), and Croatia; and, (iii) three 

warehouses, established in Vallese di Oppeano (Italy), Castagnaro (Italy), and Varazdin (Croatia). 

Concerning the selection of transportation modes, this comprises three options: (i) truck, to move 

between European entities; (ii) airplane, to move from a warehouse to a market, in cases where demand 

must be met within a short amount of time (only applicable in further countries, namely Portugal, and 

Poland); and, (iii) ship, whose goal is to move raw materials from the China supplier to the factories 

established in Europe. Finally, and given the closed-loop approach considered in this study, it is also 

assumed to have established two different types of technologies per factory: (i) production technology, 

aiming to produce the final products from raw materials; and, (ii) remanufacturing technology, which 

manufactures final products from recovered products (i.e.: once the final product has no value to the 

client, it is sent back to the network to serve as a basis for a new and remanufactured final product).  All 

values related to the parameters considered in this analysis are provided in Appendix C. 

Considering the above, an analysis of the group’s supply chain network is performed for a time horizon 

of five years, so as to understand whether or not the considered network, under the influence of 

uncertainty in several parameters, is the optimal configuration for this case-study. Thus, considerations 

such as the necessity, or lack of it, of maintaining all pre-existent entities/establishing additional entities 

(i.e.: warehouses established in all of the countries’ markets) are taken in this analysis.  

 

Figure 25 - Calzedonia Group case-study overall network 
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6.2. Results Analysis & Discussion 

Given the information presented above, and in order to validate and take relevant remarks of the 

decision-support tool presented in subchapter 5.2, this has been implemented in GAMS 31.1, and the 

case-study solved using CPLEX 12.1, in an Intel Core i7-8550U, 1.80 – 1.99 GHz processor with 16GB 

RAM. Moreover, and apart from validating the model presented, this section aims to provide sufficient 

evidence on how a sustainable supply chain under uncertainty behaves depending on the type of 

uncertainty faced, so that more critical uncertain parameters may be identified. Hence, all considerations 

of uncertainty here presented are compared with the deterministic version of the sustainable supply 

chain under consideration (case A), so that one can better understand the changes and the impacts of 

having a given parameter as uncertain. From there, it will thus be possible to comprehend how much 

does a given uncertain parameter (e.g.: demand) influences the network and, consequently, the 

decision-makers actions. Accordingly, the parameter(s) that portray the more significant changes are 

then considered while accounting for a time horizon, from which conclusions regarding the stochastic 

dynamic nature of the model can be made. Finally, it should also be noted that, during implementation, 

it has been acknowledged that all three objective functions are considered to have equal relevance to 

the decision-makers and have hence been normalized and assigned identical relevance weights 

(normalized values per objective function available in Appendix D). This decision lies with the belief that 

the final purpose of any sustainable supply chain should be the equal consideration of each pillar.  

On that note, the following results analysis is divided into three parts: i) tactical uncertainty (section 

6.2.1); ii) objective function uncertainty (6.2.2); and, iii) dynamic uncertainty (6.2.3). Hence, and 

considering part i), parameters such as demand, supply, and end-of-lifecycle products’ rate of return 

have been considered as uncertain, due, not only to their high relevance to the network, but also 

because these portray some of the most common uncertain aspects faced (subchapter 3.2). As of part 

ii), this includes costs that highly impact any supply chain network, that is, both construction and 

(variable) transportation costs. It should be noted that, despite considering three distinctive objective 

functions in the model developed, only the economic objective function has been considered for the 

uncertainty characterization, due to the fact that, for both environmental and social parameters, 

historical/estimated data is hard to obtain, leading to difficulties in applying the stochastic dynamic 

optimization approach here discussed. Considering this, for both the tactical and the objective function 

uncertainty analysis, a two-stage approach was firstly acknowledged. Afterwards, a final results analysis 

is then provided in iii), where the parameter(s) with the highest influence on the overall model network 

are considered in a stochastic dynamic approach. The choice of such strategy lies in the large problem 

complexity in hands, thus allowing, through this approach, to have a more comprehensive analysis of 

the uncertainty consequences on the design and planning of a sustainable supply chain. 

Considering this, for each case being discussed, several aspects are taken into consideration and 

compared, namely: (1) entities and corresponding capacities, which displays all entities that are part of 

the network and their respective capacities; (2) suppliers selection and allocation, where all suppliers 

considered in each network are identified; (3) production and remanufacturing technologies, which 

highlight the relationship between each production/remanufacturing technology in each considered 

factory, for each final product; (4) inventory per product, with a connection between each final product 
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and each opened warehouse regarding inventory levels; (5) transportation modes, which represents all 

transportation modes selection; and, (6) sustainable indicators, where the final score for each objective 

function is given.   

6.2.1. Tactical Uncertainty 

The tactical uncertainty evaluation’s purpose is to analyse and comprehend the network changes that 

occur when there is some uncertainty associated to one (or more) of the following key aspects: demand, 

supply, and, end-of-life products’ rate of return. Hence, a total of five distinctive cases have been 

considered, where three correspond to each parameter on its own, and the remaining two to the 

combination of more than one simultaneously, as follows: (B) uncertain demand; (C) uncertain supply; 

(D) uncertain products’ rate of return; (E) uncertain demand and uncertain supply; and, (F) uncertain 

demand, uncertain supply, and uncertain products’ rate of return. Thus, each is to be analysed and 

compared to the deterministic case, that is, case A, where no uncertainties are considered. The 

uncertainty variation for each case B to F is depicted in Figure 26, where, for each case, five distinctive 

scenarios are accounted for with the respective probabilities of occurrence.  

 

Figure 26 - Tactical uncertainty results analysis - scenario probability per case B – F 

The obtained results are given in Figures Figure 27Figure 32, where all cases are considered and 

compared to the deterministic version, for all six relevant aspects mentioned above (1 - 6). Hence, and 

firstly considering uncertain demand considerations (case B), it becomes clear that several aspects 

differ from the deterministic version (case A). For instance, and while in case A the network consists of 

a total of eight entities, where each is established to its maximum permitted installation area (100%), in 

cases where the demand is uncertain, this number increases to twelve, four of each only accounting for 

a small percentage of the total allowed installation area per entity, leaving only one entity unconsidered, 

as depicted in Figure 27. As of the suppliers selection and allocation, represented in Figure 28, this 

remains unchanged, since only the supplier from Italy is acknowledged in both cases. Moreover, in the 

deterministic case, all products are produced/remanufactured in all three factories, with the exception 

of product 2 (pair of seamless invisible shear tights), which is only remanufactured in two facilities. On 

the contrary, Figure 29 shows that, in case B, all factories are associated with the 

production/manufacturing of both products. Additionally, and while in case A both factories from Avio 

and Gissi represent the most percentage of production and remanufacturing, in case B, the facility 

established Croatia greatly impacts the overall production and specially remanufacturing processes, 

while the Avio factory portrays much smaller percentage values. As of the amount of inventory per 

facility, represented in Figure 30, the Poland warehouse is a key player in case A, whereas in case B, 
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this is combined with the contributions of the warehouses from Spain and Portugal. Another distinctive 

characteristic is the product with the overall highest inventory representation, which differs from the one 

in case A. Furthermore, when accounting for the transportation modes per network considered, depicted 

in Figure 31, and while in case A trucks are the only option selected, in case B, airplane intracontinental 

links are considered between Italy and Portugal. Moreover, and even though smaller trucks are preferred 

in both situations, in case B, there is a much higher investment of large-sized trucks, with a total 

difference of eight. Finally, and considering Figure 32, the economic sustainability indicator has seen a 

decrease of 65.4% in the NPV in case B. This number may be explained by,  among others, the following 

considerations: (i) higher construction and labour costs due to the increased number of facilities in the 

network, even without having all entities constructed to the maximum permitted installation area; (ii) 

higher installation and labour costs for the remanufacturing technology in the Avio factory; (iii) larger 

investment in the number of trucks, leading to larger fixed and variable costs; and, (iv) higher costs for 

the incorporation of air transportation options. As of the environmental impact assessment, there is a 

positive decrease of 20.85% in environmental impacts, even while considering more entities and 

airplane connections. This may be explained by the fact that, not only are some entities not large in size, 

and the airplane connections very rare in the overall products flow in the network, but also because 

there has been made an improvement regarding the incorporation of remanufacturing process in all 

three factories. Finally, and even though no significant changes have been considered in the social 

assessment, it should be noted that, with the increased number of entities and transportation modes in 

the network, it should be expected that the social impact would be positively impacted. 

Now considering case C, that is, uncertain supply, and as depicted in Figure 27, only one extra entity is 

accounted for in comparison to case A, which is the warehouse in Portugal. Moreover, and even though 

this new incorporation is established to the maximum allowed installation area, several other facilities 

are only being considered in a much smaller percentage of the total permitted capacity. Additionally, 

Figure 28 shows that the suppliers’ selection and allocation solely relies on the supplier form Italy in 

both cases since no other supplier is considered in neither network. On another note, in the final products 

production process, represented in Figure 29, it is possible to state that the Avio factory does not 

contribute in the same amount as the remaining. As of the remanufacturing process, this heavily relies 

on the efforts made by the Croatian factory. Furthermore, and even though product 2 (pair of seamless 

invisible shear tights) represents the highest product in inventory in both cases A and C, the Portuguese 

warehouse is seen as the key contributor in the storage levels considerations under uncertain supply, 

as depicted in Figure 30. As represented in Figure 31, transportation modes considerations do not 

represent major differences between both cases, thus being trucks are the only mode selected, with a 

slight decrease in the amount of small-sized trucks purchase. Finally, and as of the economic 

assessment, there is a total decrease of  87.80%, thus representing a much smaller NPV (even smaller 

than in cases where demand is the uncertain parameter), depicted in Figure 32. This value may be 

explained by, among other, the following topics: (i) high construction costs for the Portuguese 

warehouse at 100% of the permitted capacity; (ii) higher labour costs following the establishment of a 

new facility; and, (iii) establishment of production/remanufacturing technologies that are idle, leading to 

higher investment and labour costs. Moreover, and as of the environmental assessment, this represents 
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a positive decrease of 44.20%, higher that the above discussed case B, which may rely on the following 

considerations: (i) smaller amount of entities in the network, leading to a smaller environmental impact 

per m2; (ii) smaller amount of both small and large-sized trucks; and, (iii) zero airplane connections being 

considered. Lastly, and as of the social assessment, there has been a decrease of 10%, which may rely 

on the economic development of the regions being considered.  

Case D, on the other hand, represents situations where the end-of-life products’ rate of return is 

uncertain in a given closed-loop supply chain network. Accordingly, and following the data provided by 

Figure Figure 27, one can state that, for the overall entities inclusion in the network, there is one less 

facility being established, namely, the warehouse from Poland. Still on this topic, it is also relevant to 

acknowledge the high decrease in the installation areas per facility, where most are under 50% of the 

total permitted installation area per building type (see Appendix C for further details). Furthermore, and 

as depicted in Figure 28, given the fact that the Italian supplier is the only one considered in the network, 

there are no differences in the suppliers allocation. Nonetheless, and when accounting for the production 

and remanufacturing of the final products represented in Figure 29, it is clear that, for product 2, that is, 

the pair of seamless invisible shear tights, there zero remanufacturing. Additionally, and even though all 

three factories vary considerably in their contributions for the production/remanufacturing of both final 

products, it can be stated that Gissi represents the smaller overall contributor, leaving the remaining 

with the highest impacts. In regards to the inventory data provided by Figure 30, the overall highest 

storage levels are of product 2, strongly due to Vallese Di Oppeano warehouse’s efforts, while product 

1 is stored fairly evenly across all three opened warehouses. Similarly to case A, and according to Figure 

31, in case D, trucks of a smaller size are preferred over the ones of a larger size, being the biggest 

difference in the amount purchased: case D requires seven additional smaller trucks, and six larger 

ones. It should also be noted that in case D airplane connections are made between Italy and both 

Portugal and Poland. Finally, and as depicted in Figure 32, the economic sustainability pillars sees a 

positive increase of 28.42%, which may be due rely, not only on the amount of product sold, but also to 

the fact that no remanufacturing technology investment has been made for one type of product, thus 

lowering both investment and labour costs. Following the same rationale, this increase in the Net 

Present Value might also be due to the exclusion of one facility, the Poland warehouse, in regards to 

the deterministic case, hence leading to fewer construction and labour costs. On another note, there 

has also been a positive decrease of 48.49% in environmental concerns, which, even though is not 

being supported by the remanufacturing of product 2, nor on the fact that airplane connections are being 

considered, may be explained by the fewer number of established facilities, as well as possible higher 

rates of end-of-life products returns. Lastly, in regards to the social assessment, there has been a nearly 

insignificant decrease in its total score, possibly due to the economic development that has been 

unconsidered with the exclusion of one facility when compared to the deterministic case. 

Bearing in the mind the information above, and as depicted in Figures Figure 27Figure 32, the final two 

cases in the tactical analysis, cases E and F, represent the combination of more than one of the above 

discussed uncertain parameters, so that further and more reliable conclusions may be made in the 

selection of the more critical parameters. Hence, and in regards to the entities considerations for both 

networks (E and F) represented in Figure 27, it becomes clear that these are aligned with the network 
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of case B, where demand was said to be uncertain, only varying in some of the entities installation areas, 

which in general, are higher in case F. Moreover, no changes have been made in the suppliers allocation 

since Italy continues to be the only supplier in the equation, as provided in Figure 28. Now considering 

the production and remanufacturing of products depicted in Figure 29, it is clear that, in case E, the 

Croatian factory has a critical role in the network, whereas the remaining have cases where little to no 

contributions are made. In case F, however, the overall contributions are more dispersed, having, 

nonetheless, cases where the Avio factory is the highest or even the only entity considered, greatly 

differing from cases A and B. Figure 30 considers the final products’ inventory levels, where can state 

that one major difference between cases E and F is the product with the overall higher level of inventory, 

where case E is aligned with case A’s main findings, whereas case F follows the same pattern as in 

situations where only demand is said to be uncertain. Additionally, the warehouses that mostly contribute 

for the inventory levels in case E are the same as in case B, that is, Spain, Portugal, and Poland, 

whereas in case F, Varazdin and Castagnaro also play key roles in this matter. Transportation heavily 

relies on trucks for both cases E and F, where no air or sea transportations are considered, as seen in 

Figure 31. Furthermore, the total amount of trucks in both cases is smaller than the values for both 

cases A and B. Finally, in the economic assessment, depicted in Figure 32, case E registers a total 

decrease of 61.39%, leading to a slightly higher total NPV than in case B. This may be explained by, 

among other aspects, the following considerations: (i) smaller investment in trucks; and, (ii) no air 

transportation considerations. Now considering the environmental assessment of case E, it is clear that 

there has been a positive increase of 17.02%, is lower than the one observed in case B, and possibly 

aligned with the fact that the entities installation areas are greater in case E. As of case F, and firstly 

considering the economic assessment, a total decrease in the NPV of 68% is observed, leading to 

higher negative contributions than case E. This may be explained by the fact that, not only are the 

facilities installed considering higher construction areas, but also due to the larger investment in trucks, 

especially in the large-sized ones. Lastly, and in regards to social considerations, both cases E and F 

represent the same residual increase of 0.0024%, possibly due to the increase in the economic 

development.   

 

Figure 27 - Tactical uncertainty results analysis - entities 

 

Figure 28 - Tactical uncertainty results analysis - suppliers 
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Figure 29 - Tactical uncertainty results analysis - technologies 

 

Figure 30 - Tactical uncertainty results analysis - inventory 

 

Figure 31 - Tactical uncertainty results analysis - transportation modes 

 

Figure 32 - Tactical uncertainty results analysis - sustainable indicators 

Finally, and considering the analysis above, it becomes clear that, when accounting for each uncertain 

parameter on its own, demand represents the highest contributor to the overall changes in a sustainable 

supply chain network. This remark is further supported by cases E and F, where demand has been 

combined with other uncertain parameters, and where one can state that the obtained networks follow 

the same pattern as if demand was the only uncertain aspect. Hence, and even though these additional 

parameters did not portray major changes on the network on their own, when combined with the 

uncertain demand, greater impacts have been registered, thus validating the significant relevance of 

having uncertain demand on a sustainable supply chain.  

On another note, it becomes clear that case D, where the end-of-life products rate of return is uncertain, 

represents the scenario where a higher Net Present Value is obtained. The best possible score for the 

environmental assessment is also considered in this case, where extra contributions may be due to 

possibly higher amounts of returned products and consequently higher remanufacturing processes. 

Lastly, cases B, E and F represent the overall best social assessment, which may heavily rely on the 

increased economic development created with the establishment of additional entities.   

6.2.2. Economic Objective Function Uncertainty 

Following the analysis performed above, in the economic objective function uncertainty assessment, 

that is, for the consideration of uncertainty in both construction and (variable) transportation costs that 

affect the economic objective function, a result analysis on the network changes is performed. In this 

analysis, a total of three cases is considered, namely: (G) uncertain construction costs; (H) uncertain 
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(variable) transportation costs; and (I) combination of construction and variable transportation costs. 

Likewise, these cases are to be compared with the initial network of the deterministic case, that is, case 

A, in the six identified key points for this analysis. The uncertainty variation of each parameter and case 

in analysis is provided in Figure 33, which follows the same pattern as seen above, where, for each 

case, five scenarios are considered with the respective probabilities of occurrence. Finally, the obtained 

results for this analysis are depicted in Figures Figure 34 Figure 39. 

 

Figure 33 - Economic objective function uncertainty results analysis - scenario probability per case G – I 

Accordingly, all three cases under analysis, G – I, are represented along with case A, so as to properly 

compare them with the deterministic version of the network’s case-study. Therefore, and firstly 

considering the case where the entities’ construction costs are uncertain (case G), as depicted in Figure 

34, one can state that all opened facilities in this scenario are aligned with the ones considered in the 

deterministic one. The main difference, however, is the installation area per entity, which, in case G, is 

very limited considering the maximum permitted, whereas in the deterministic version, all entities are 

installed to the maximum allowed. Moreover, and given that only one supplier is considered in the 

network in case G, Italy is in charge of supplying all factories at 100% (see Figure 35). On another note, 

and when accounting for the final products’ production and remanufacturing per factory represented in 

Figure 36, the Gissi facility is a key contributor in the production process. Nonetheless, when considering 

the remanufacturing of products, this key role shifts towards the Croatian factory, in charge of all the 

remanufacturing processes in case G, leading to a major difference from the baseline case A, where 

most of the remanufacturing contributions come from the factory established in Gissi. As of the amount 

of inventory per product, depicted in Figure 37, both cases (A and G) give preference to the overall 

storage of product 1 (pair of mid-calf socks). Nonetheless, and while in case A the warehouse from 

Poland represents higher inventory products levels, in case G, this facility is combined with the 

contributions also made from Vallese Di Oppeano and Varazdin warehouses. Regarding the 

transportation modes selection, case G follows the same rationale as case A by only accounting for road 

transportation, and by giving preference to smaller-sized trucks, with a total of less four than in case A 

(see Figure 38). Finally, sustainability indicators from Figure 39 show that the NPV has an increase of 

33.85% when compared to the initial deterministic value, which, at first glance may be unexpected, since 

there is high uncertainty regarding construction costs. Nonetheless, one should note that, even though 

construction costs may be higher, the installed area in some entities has greatly decreased, whereas in 

the deterministic version, they are at their fullest. Other key factors may rely on the fact that very little 

remanufacturing has been made in the Croatian warehouse in case A, which may lead to higher and 
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possibly unnecessary investment and labour costs. Finally, in case G there has been a smaller 

investment in transportation modes, which positively impacts the Net Present Value of this scenario. 

Additionally, environmental concerns register a positive decrease of 39.31%. This decrease heavily 

relies on the less impacts created by the entities total capacities, but also on the usage of less road 

transportation trips than in case A. Finally, the social impact assessment only registers a positive 

residual increase, possibly due to a slight positive difference in the economic development.  

Now considering case H, where variable transportation costs, that is variable truck (namely, fuel price), 

plane, and ship costs, are uncertain, it is possible to observe the resemblances between its network and 

the one created in case A, depicted in Figure 34. Thus, all suppliers, factories, and warehouses 

accounted for in the deterministic case are also being considered in the case where transportation costs 

are uncertain, with the same installed capacities (100%). Supplier selection remains unaltered since no 

other supplier than the Italian one are considered in neither network (see Figure 35). In regards to the 

production and remanufacturing of final products in factories, depicted in Figure 36, significant changes 

should be noted, namely: in case H, the production of product 2 is only considered in two facilities, with 

higher contributions from the Avio factory; the remanufacturing of product 1 is only held in Avio and 

Gissi, being the former responsible for almost the entire process; and, case H considers the 

remanufacturing of product 2 in all factories, with special emphasis on  the Avio factory, while this is not 

at all included in this process in case A. Additionally, and now considering the inventory levels per 

product, provided in Figure 37, both cases acknowledge that product 1, that is, the pair of mid-calf socks, 

is the one with the highest overall storage in the facilities. Nonetheless, and while case A clearly defines 

a key warehouse in the inventory levels per product, case H identifies all warehouses to be fairly equal 

in its inventory relevance. As of transportation modes selection, represented in Figure 38, one significant 

difference to the baseline scenario is the consideration of one airplane connection, held between Italy 

and Portugal, followed by the smaller investment in the overall number of trucks. Finally, when 

acknowledging the economic assessment of case H given in Figure 39, one is faced with a high negative 

decrease of the NPV in 77.61%, which may be due on several aspects, such as: (i) establishment of 

remanufacturing technologies that are idle, leading to higher investment and labour costs; (ii) higher 

investment in total amount of large-sized trucks; and, (iii) investment of a air connection between Italy 

and Portugal, leading to several costs, such as fixed transportation costs, fixed hub terminal costs, 

handling costs per unit at hub terminals, and, variable air transportation costs, here in analysis. 

Regarding the environmental assessment, this has suffered a positive decrease of 12.32%, which may 

rely on the usage of fewer trucks. Lastly, the social assessment as provided no changes since the 

economic development, the number of accidents, and the wage gender ratio is similar in both cases. 

Case I represents the final scenario under analysis, where both construction and variable transportation 

costs, analysed above individually, are combined and considered to be uncertain. Hence, and firstly 

accounting for the overall network structure obtained, and as depicted in Figure 34, one can state that 

all entities present in case I are aligned with the ones established in both case A, that is, the deterministic 

scenario, and cases G and H. Additionally, and regarding the installation areas considered, all opened 

facilities in case I are at their maximum capacity, similarly to both cases A and H. As of suppliers 

selection and allocation, case I follows the same pattern as all cases previously discussed, where only 
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the Italian supplier is acknowledged (see Figure 35). On another note, and similarly to case H, the 

production of final products is assured by all three established factories, being Avio the key contributor 

for this process (depicted in Figure 36). Moreover, the remanufacturing process of product 1, that is, the 

pair of mid-calf socks, is mainly held in the Avio factory, followed by small contributions of both Croatia 

and Gissi warehouses; product 2, on the other hand, is only remanufactured in the Avio factory, thus 

strengthening the cruciality of this facility in case I. When accounting for product inventory, provided in 

Figure 37, case I follows the same pattern as case A, where product 2 (pair of seamless invisible shear 

tights) is the one with the overall largest amount stored in all available warehouses. Looking further into 

this subject, one can state that Varazdin warehouse plays a crucial role in the storage of product 1, 

whereas for product 2, this facility is combined with the efforts made from the Vallese Di Oppeano 

warehouse. As of transportations modes selection, represented in Figure 38, case I differs from both 

cases A and G, by accounting for, not only road, but also for air transportation. Thus, and considering 

the former, this is supported by a total of 27 trucks, where most are of a smaller size. Regarding the 

latter, air transportation is performed by accounting for two distinctive connections, from Italy to both 

Portugal and Poland. Finally, and according to Figure 39, the economic sustainability indicator 

represents an overall decrease of the NPV of 85.17%, which may be explained by, among others, the 

following aspects: (i) establishment of production/remanufacturing technologies that are idle, leading to 

higher investment and labour costs (ii) incorporation of two air connections, often used in the network 

and hence increasing the fixed transportation costs, fixed hub terminal costs, handling costs per unit at 

hub terminals, and, variable air transportation costs; and, (iii) potentially higher construction and 

transportation costs, here considered to be uncertain. Furthermore, and as of the total score of the 

environmental considerations, case I portrays a total positive decrease of 11.82%, which is intrinsically 

connected with the smaller amount of trucks purchased. Nonetheless, and when compared with case 

G, this decrease is smaller, which may be explained by the usage of air transportation, hence greatly 

impacting the environment. Finally, social considerations are in line with the remaining cases.  

 

Figure 34 - Economic objective function uncertainty results analysis - entities 

 

Figure 35 - Economic objective function uncertainty results analysis - suppliers 
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Figure 36 - Economic objective function uncertainty results analysis - technologies 

 

Figure 37 - Economic objective function uncertainty results analysis - inventory 

 

Figure 38 - Economic objective function uncertainty results analysis - transportation modes 

 

Figure 39 - Economic objective function uncertainty results analysis - sustainable indicators 

Considering this analysis, it becomes clear that, when accounting for each uncertain parameter on its 

own, neither portrays major changes in the overall network structure. Moreover, when combined, this 

network remains unaltered, thus leading to believe that, even though both parameters lead to changes 

in several aspects, neither is seen as critical when uncertain. Nonetheless, both uncertainties should 

always be acknowledged when present, since these may affect several characteristics, such as 

production, remanufacturing, inventory, and transportation options.    

Finally, and when considering the sustainability indicators, it becomes clear that case G, where 

construction costs are uncertain, represents the scenario where a higher Net Present Value is obtained. 

The best possible score for the environmental assessment is also considered in this case. Finally, all 

three cases under analysis, G, H and I, represent similarities in the overall best social assessment. 

6.2.3. Dynamic Optimization Assessment 

Given the result analysis presented above, where one may conclude the influence of each uncertain 

parameter on a sustainable supply chain network, it becomes clear that demand portrays the most 

significant changes in the network. Considering this, this parameter has been further analysed and here 

studied in a dynamic environment, where its uncertainty is dependent on time periods/stages. Hence, 

and as depicted in Figure 40 , the stochastic dynamic approach follows a scenario tree formulation, 
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where demand is considered to be uncertain for a time period of five years. Therefore, all nodes have 

been assigned a probability of occurrence, while each branch an associated demand variation (either 

+10% or –10%). Finally, and according to subchapter 5.2 main findings, a total of 16 scenarios have 

been originated. From this, results for this analysis have been obtained, leading to a new case under 

analysis, case J, whose results are compared with cases A (deterministic) and B (uncertain demand), 

as depicted in Figure 41Figure 46. 

 

 

Figure 40 – Stochastic dynamic results analysis for uncertain demand - scenario tree representation 

Accordingly, and as depicted in Figure 41, case J network greatly differs from case B, where demand 

was studied as an uncertain parameter, by only opening 7 out of 13 possible facilities. Moreover, and 

even though it is relatively similar to the baseline case, that is case A, none of the considered entities in 

case J have reached the maximum permitted capacity installation area, leading to  believe that, when 

accounting for uncertainty considerations throughout time, major changes are obtained in the overall 

network structure of the sustainable supply chain. As of the suppliers selection and allocation, 

represented in Figure 42, this remains unchanged, since only the supplier from Italy is acknowledged in 

any of the cases here considered, which may be explained by high transportation costs from other valid 

suppliers (namely in China), to the factories established in Europe. Moreover, and as seen in Figure 43, 

case J’s production of final product 1 is fairly distributed across all three factories, with slightly higher 
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contributions from the Croatian factory. As of final product 2, its production heavily relies on the facility 

established in Gissi, followed by contributions made by the Avio and Croatia factories. Nonetheless, and 

when considering the remanufacturing of both products 1 and 2, the Croatian factory holds full 

responsibility, with no contributions from the remaining. These aspects, when compared to both cases 

A and B, lead to significant changes in the overall production and remanufacturing of both final products, 

especially when accounting for the remanufacturing process. As of the amount of inventory per facility, 

represented in Figure 44, and even though only three warehouses have been considered in case J, all 

three are seen as key contributors. Accordingly, Vallese Di Oppeano represents the facility with the 

highest overall inventory level of product 1, followed by Castagnaro and Varazdin; as of product 2, it is 

mainly stored in Varazdin, followed by Vallese Di Oppeano and Castagnaro warehouses. Thus, and 

when accounting for the obtained results in both cases A and B, one can state the obvious differences, 

as in these cases preferences are given to facilities that are not considered in case J. One final aspect 

to consider in the inventory analysis is the resemblance of case J to case B in the final product with the 

overall highest inventory, where product 2 has been preferred. On another note, and now accounting 

for the main findings portrayed in Figure 45, only one transportation mode has been considered in case 

J, leaving all product flows being taken care by road transportation. Hence, and even though these 

remarks lead to similarities to case A, differences from case B are acknowledged by having case J not 

accounting for air transportation options. Furthermore, and despite being the only transportation option 

for products flows in case J, the total amount of trucks invested in case J is less than case A and B by 

6 and 22, respectively. Finally, and considering Figure 46, one may state the great differences from both 

the economic and environmental objective functions obtained in case J for either case A or B. Thus, and 

even though some aspects may be due to several topics mentioned in the above analysis, special 

remarks should be given to the following points: (i) possible higher economic and environmental 

negative impacts as a consequence of higher demand values from the ones obtained in cases A and B, 

as a result of the uncertain variations throughout time; and, (ii) possible higher economic and 

environmental costs as a result of recourse actions taken between time periods, seen as corrective 

measures once the outcome of a given time period/stage is presented.  

 

Figure 41 – Stochastic dynamic results analysis for uncertain demand - entities 

 

Figure 42 - Stochastic dynamic results analysis for uncertain demand - suppliers 
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Figure 43 - Stochastic dynamic results analysis for uncertain demand - technologies 

 

Figure 44 - Stochastic dynamic results analysis for uncertain demand - inventory 

 

Figure 45 - Stochastic dynamic results analysis for uncertain demand - transportation modes 

 

Figure 46 - Stochastic dynamic results analysis for uncertain demand - sustainable indicators 

 

Henceforth, and when comparing both types of analysis here performed, one may conclude that, when 

uncertain considerations throughout time are acknowledged, the impact on the overall network structure 

is highly influenced. This, along with the fact that decision-makers more than ever need a holistic view 

of the consequences of a given uncertain parameter while accounting for a given time horizon, lead to 

conclude that dynamic approaches, namely, stochastic dynamic programming, are a necessary tool for 

the design and planning of a sustainable supply chain.  

6.3. Chapter Final Remarks 

The present chapter focuses on the validation of the stochastic dynamic model for sustainable supply 

chains under uncertainty through its application into a representative case-study of Calzedonia Group, 

an Italian company established in the garment industry, and with a strong focus on the European market.  
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Considering the large problem complexity and subsequent computational burden in analysing several 

uncertain parameters in a dynamic environment (see Appendix E), the present study has been divided 

into three main parts, being the first two relative to a two-stage stochastic programming model, while 

the third one focused in a stochastic dynamic approach. Hence, these parts are defined as: (i) tactical 

uncertainties results analysis, where five distinctive cases have been accounted for, namely demand 

uncertainty, supply uncertainty, products’ rate of return uncertainty, demand and supply uncertainties, 

and, demand, supply, and products’ rate of return uncertainties; (ii) economic objective functions results 

analysis, which acknowledged three situations, such as construction costs uncertainty, variable 

transportation costs uncertainty, and, construction and variable transportation uncertainties; and, (iii) 

dynamic uncertainty results analysis, where the parameter(s) with the highest influence on the overall 

model network, in this case, the final products’ demand, have been considered in a stochastic dynamic 

approach.  

Henceforth, all cases B - J have been compared with a baseline case (case A), that is, the deterministic 

version of the Calzedonia Group network. Moreover, these have been evaluated considering six 

distinctive aspects, such as: (1) entities and corresponding capacities; (2) suppliers selection and 

allocation; (3) production and remanufacturing technologies; (4) inventory per product; (5) transportation 

modes; and, (6) sustainable indicators.   

Considering the above, main findings conclude that uncertain demand has led to more significant 

changes in the network, both on its own, but also when combined with other uncertain parameters. From 

this, one may conclude that this parameter represents a critical point in any (sustainable) supply chain, 

and should thus be properly accounted for so that its uncertainties do not negatively affect both the 

network and the decision-makers’ actions. Moreover, and even though other uncertain parameters have 

not lead to great impacts in the network, relevant obtained changes should also be considered since 

these represent key points that highly affect any network economically, environmentally, and socially. 

Examples of these relate to transportation modes selection, inventory management, and even 

production and remanufacturing processes of final products.  

Additionally, and once demand as considered to be uncertain in a dynamic environment, major changes 

in both the network and in tactical aspects have been acknowledged. This, along with the increasing 

necessity of decision-makers to properly forecast parameters variations across time, lead to validate the 

great necessity and importance of more robust and sophisticated methods for the uncertain parameters 

assessment, such as stochastic dynamic programming. Finally, and from these results, it is also possible 

to state great negative impacts in both the economic and environmental assessments, which may be in 

line with possible higher impacts due to higher demand variations throughout time, as well as possible 

recourse actions taken as corrective measures once the outcome of a given stage is known.  

 

On that note, and considering the work presented, final considerations should be given. Hence, and 

regardless of analysing a sustainable supply chain network academically or professionally, one should 

always account for the inherent demand uncertainty faced. Nonetheless, other key parameters should 

not be unacknowledged, since these may lead to significant changes in the overall network, depending 

on its characteristics. Moreover, and in order to properly account for all possible origins of uncertainty, 
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the first step of the design and planning of any (sustainable) supply chain should focus on the 

identification of all possible sources of uncertainty in the network. From there, these should be properly 

studied and accounted for, so as to not negatively influence the decisions to be made in the network. 

Another key aspect to be considered by any decision-maker is the possibility of having great 

improvements in the sustainability indicators, despite facing uncertain parameters, leading to believe 

that this is not necessarily a negative aspect of the network, but instead, an opportunity for improvement 

sustainably. Finally, one should note the great importance of the usage of more sophisticated methods 

for the uncertainty assessment, such as stochastic dynamic programming, as this has showed to greatly 

impact the overall network structure, thus leading to more reliable and complete results.  
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7. FINAL CONCLUSION & FUTURE WORK 

The closing chapter of the present work focuses on both the final conclusion of the developed work, and 

on providing relevant aspects to be considered in the future with a further analysis on the topic. Hence, 

relevant findings are highlighted in section 7.1, and limitations to be tackled in the future identified in 

Section 7.2.  

7.1.  Final Conclusion 

The present dissertation focuses on a commonly faced challenge to any decision-maker when designing 

and planning a sustainable supply chain, that is, the inherent and inevitable uncertainty faced in several 

parameters. Thus, and so as to provide sufficient knowledge on the topic, some of the frequently applied 

optimization methods to model uncertainty have been identified and described, where special 

considerations are given to more rigorous and sophisticated methods, namely dynamic and hybrid 

optimization.  

A comprehensive literature review has been provided so as to identify the main contributions to the 

literature and potentially identify research gaps that need to be acknowledged and tackled. Thus, this 

review firstly concluded that, even though several articles explore supply chain networks under 

uncertainty, little has been done so as to incorporate sustainability concerns as well, where special 

emphasis should be given to the lack of articles exploring all three pillars of sustainability. Moreover, it 

has also been concluded that a large percentage of the work developed only considers static 

optimization, leaving the dynamic optimization advantages highly unutilized.  

Considering the above, and in order to provide relevant advances to this topic, a decision-support tool 

has been developed with the purpose of properly modelling uncertainty in sustainable supply chains. 

This tool is developed following the work developed by (Mota et al. 2018), which has been adapted so 

as to model uncertainty in several parameters (demand, supply, products’ rate of return, and 

construction and transportation costs) while using stochastic dynamic optimization. Moreover, the 

economic assessment has been performed through the Net Present Value, and with special 

considerations to the risk often faced when having large investment decisions. In regards to the 

environmental impact assessment, this has followed a holistic approach, though the Life Cycle 

Assessment. Lastly, social concerns have been tackled by providing a relevant review on S-LCA, and 

applying its key points, while following the same rationale as the LCA.  

Finally, the model validation has considered a representative case-study of Calzedonia Group, an Italian 

company settled in the garment industry, often dealing with complex and extensive networks. Hence, 

this analysis has been divided into three main parts: tactical, with regards to the objective function, and 

with dynamic considerations. Thus, and while the first two have been studied in a two-stage stochastic 

environment, the latter has focused on the impact of an uncertain parameter in a sustainable supply 

chain throughout time, that is, while accounting for a dynamic analysis. From these, several conclusions 

have been made, namely the great impact obtained from having demand as an uncertain parameter, 

and the need to always account for all possible uncertain parameters of a sustainable supply chain 

network since the beginning of its design and planning process, which does not necessarily negatively 



 

80 

 

impacts the overall obtained sustainable indicators. Another key consideration is the great added value 

obtained from the incorporation of a more sophisticated method, such as, the stochastic dynamic 

programming, which has led to significant changes in the network structure and functioning.  

 

Considering the above, it is foreseen that the research and work developed in this dissertation serve as 

a proper guideline to model uncertainty in sustainable supply chains. Hence, it is expected that 

contributions are to be made for both academically, but also professionally, as a supporting tool for 

decision-makers aiming for a sustainable supply chain without suffering from uncertainty.  

7.2. Future Work 

Future research on this subject is foreseen so as to continue the work developed in this dissertation. 

Thus, one aspect to be considered is the further investment in the optimization tools available, and 

hence dive deeper on the advantages of, both the dynamic method, and the hybrid programming, with 

a hybrid dynamic optimization approach. Moreover, additional uncertain parameters should be explored, 

namely entities varying capacities, environmental and social considerations, among others relevant 

depending on the type of network and case under analysis. Nonetheless, with the improved robustness 

and sophistication of the optimization methods used, comes computational burdens, which may lead to 

a higher level of complexity in obtaining valid solutions. Therefore, and in order to tackle such issue, 

one should further explore efficient solution techniques, which may rely on the problem’s decomposition, 

or even in the utilization of metaheuristics to properly reach the desirable outcome.  

Another aspect that should be considered in the future relies on the social assessment. Even though 

the present dissertation provides relevant research on the S-LCA, further development should be made, 

where, for instance, additional social indicators should be considered. Furthermore, this assessment 

should also follow on the continuous advances being made in the S-LCA methodology, as it is proving 

to be a great holistic tool for social considerations.  

On another note, and following the work here developed, the epsilon constraint method is another aspect 

interesting to be explored. Thus, it is expected that from this, one can further understand the impact of 

uncertainty in a sustainable supply chain, by analysing the different outcomes and impacts of having the 

three objective functions varying in emphasis on one (or more) over other(s), hence, avoiding having to 

assign specific weights to each objective function. 

Finally, further applications of the work developed in real case-studies represent an interesting topic to 

explore, where the results obtained from to model would be compared to a deterministic baseline held 

by a company. Interesting industries to explore are those that, not only suffer from high uncertainties, 

but also represent a great case to further explore social concerns, thus involving entities from distinctive 

countries and hence different regional developments and living conditions.  
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APPENDIX A 

Table A.1 - Sample of 72 papers analysed 

 

Articles 

 

Decision Levels 
  

Optimization 

Approach 

 

Uncertainty 

Parameters  

 

Sustainability 

Considerations 

 

Ahn and Han (2018) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Demand 

  

Economic & 

Environmental 

 

Alem, Clark, and 

Moreno (2016) 

 

Tactical 

 

Stochastic 

Programming 

 

Demand, nature 

and magnitude of 

disaster, supply, 

transportation 

links & resources 

availability 

 

N/A 

 

Alizadeh, Amiri-Aref, 

et al. (2019) 

 

Strategic & 

Operational 

 

Stochastic 

Programming & 

Robust 

Optimization 

 

Demand & 

Transportation 

capacity 

 

N/A 

 

Alizadeh, Ma, et al. 

(2019) 

 

Strategic & 

Operational 

 

Stochastic 

Programming & 

Robust 

Optimization 

 

Carbon tax 

rate/price 

 

Economic & 

Environmental 

 

Alvarez et al. (2020) 

 

Tactical & 

Operational 

 

Robust 

Optimization 

 

Yield 
 

N/A 

 

Ameknassi, Aït-Kadi, 

and Rezg (2016) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Demand, facilities 

capacities, 

variable costs & 

returned products 

quality 

 

Economic & 

Environmental 

 

Amiri-Aref, Klibi, and 

Babai (2018) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Demand 
 

N/A 

 

Balcik and Yanıkoğlu 

(2020) 

 

Operational 

 

Robust 

Optimization 

 

Travel times 
 

N/A 

 

Banasik et al. (2019) 
 

Tactical 

 

Stochastic 

Programming 

 

Demand & Yield 

 

Economic & 

Environmental 
 

Ben Mohamed, Klibi, 

and Vanderbeck 

(2020) 

 

Strategic 

 

Stochastic 

Dynamic 

Optimization 

 

Demand 
 

N/A 
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Bertazzi and 

Maggioni (2018) 

 

Tactical 

 

Stochastic 

Dynamic 

Optimization 

 

Demand 
 

N/A 

 

Buergin et al. (2019) 
 

Tactical 

 

Stochastic 

Programming & 

Robust 

Optimization 

 

Location & 

production periods 

 

N/A 

 

Chen and Monahan 

(2010) 

 

Tactical 

 

Stochastic 

Programming 

 

Demand & 

environmental 

waste limit 

 

Economic & 

Environmental 

 

Cunha, Raupp, and 

Oliveira (2017) 

 

Strategic 

 

Stochastic 

Programming 

 

Demand 
 

N/A 

 

Dai et al. (2018) 
 

Tactical 

 

Fuzzy 

Programming 

 

Capacity & carbon 

emissions 

 

Economic & 

Environmental 
 

Diehlmann et al. 

(2019) 

 

Strategic & 

Operational 

 

Stochastic 

Programming 

 

Demand, supply & 

product prices 

 

Economic & 

Environmental 

 

Feitó-Cespón et al. 

(2017) 

 

Strategic 

 

Stochastic 

Programming 

 

Demand & supply 

 

Economic, 

Environmental & 

Social 
 

Felfel, Ayadi, and 

Masmoudi (2016) 

 

Tactical 

 

Stochastic 

Programming 

 

Demand 
 

N/A 

 

Gambella, Maggioni, 

and Vigo (2019) 

 

Tactical 

 

Stochastic 

Programming 

 

Waste Generation 
 

N/A 

 

Gao and You (2017) 

 

Strategic & 

Operational 

 

Stochastic 

Programming 

 

Demand, supply 

product 

productivity, 

economic cost & 

life cycle 

inventories 

 

Economic & 

Environmental 

 

Gilani Larimi and 

Yaghoubi (2019) 

 

Tactical 

 

Stochastic 

Programming & 

Robust 

Optimization 

 

Demand 
 

N/A 

 

Golsefidi, Reza, and 

Jokar (2020) 

 

Strategic 

 

Robust 

Optimization 

 

Demand, number 

of defective 

products collected 

from each retailer 

& reproduction 

cost of each 

product 

 

N/A 
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Govindan et al. 

(2020) 

 

Strategic 

 

Fuzzy 

Programming 

 

Demand 

 

Economic & 

Environmental 

 

Haddadsisakht and 

Ryan (2018) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming & 

Robust 

Optimization 

 

Demand, returned 

products supply & 

carbon tax rate 

 

Economic & 

Environmental 

 

Hong et al. (2018) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Demand 

 

Economic & 

Environmental 

 

Hu and Hu (2020) 
 

Tactical 

 

Stochastic 

Programming & 

Robust 

Optimization 

 

Demand & 

overtime 

processing costs 

 

N/A 

 

Isuru et al. (2020) 
 

Tactical 

 

Robust Adaptive 

Optimization 

 

Supply 
 

N/A 

 

Jabbarzadeh, 

Haughton, and 

Pourmehdi (2019) 

 

Tactical 

 

Robust 

Optimization 

 

Demand 

 

Economic & 

Environmental 

 

Jeihoonian, Kazemi 

Zanjani, and 

Gendreau (2017) 

 

Strategic 

 

Stochastic 

Programming 

 

Returned products 

quality 

 

Economic & 

Environmental 

 

Jiang et al. (2020) 
 

Strategic 

 

Robust 

Optimization 

 

Demand 

 

Economic & 

Environmental 

 

Jiao et al. (2018) 

 

Strategic & 

Tactical 

 

Robust 

Optimization 

 

Demand, waste 

ratio & buyers’ 

expectations 

 

Economic & 

Environmental 

 

Kuşakcı et al. (2019) 

 

Strategic & 

Tactical 

 

Fuzzy 

Programming 

 

Amount of End-of-

life vehicles 

generated 

 

N/A 

 

Li and Hu (2017) 
 

Tactical 

 

Stochastic 

Programming 

 

Demand & 

workforce 

uncertainty 

 

N/A 

 

Li, Yang, and Hu 

(2018) 

 

Tactical 

 

Stochastic 

Programming 

 

Demand & supply 

 

Economic & 

Environmental 

 

Liao and Deng (2018) 
 

Tactical 

 

Stochastic 

Programming 

 

Demand 

 

Economic & 

Environmental 
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Liu et al. (2020) 
 

Tactical 

 

Robust 

Optimization 

 

Demand 
 

N/A 

 

Lu et al. (2020) 
 

Strategic 

 

Fuzzy 

Programming 

 

Transportation 

costs, return rates 

& waste ratios 

 

N/A 

 

Martí, Tancrez, and 

Seifert (2015) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Demand 

 

Economic & 

Environmental 

 

Mirmajlesi and 

Shafaei (2016) 

 

Strategic & 

Tactical 

 

Robust 

Optimization 

 

Demand 
 

N/A 

 

Modarres and 

Izadpanahi (2016) 

 

Tactical 

 

Robust 

Optimization 

 

Demand & 

production 

capacity 

 

Economic & 

Environmental 

 

Mohammad Hasany 

and Shafahi (2017) 

 

Tactical 

 

Stochastic 

Programming 

 

Demand & supply 
 

N/A 

 

Mota et al. (2018) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Demand 

 

Economic, 

Environmental & 

Social 

 

Ouhimmou et al. 

(2019) 

 

Strategic 

 

Robust 

Optimization 

 

Demand 
 

N/A 

 

Paul and Zhang 

(2019) 

 

Strategic 

 

Stochastic 

Programming 

 

Location, supply 

amount & 

shipping capacity 

 

N/A 

 

Pishvaee, Razmi, and 

Torabi (2014) 

 

Strategic & 

Tactical 

 

Fuzzy 

Programming 

 

Demand, returned 

products, 

capacities, costs, 

environmental 

impacts, number 

of days lost, job 

opportunities, 

potential 

hazardous 

products, 

economic value & 

social impacts 

 

Economic, 

Environmental & 

Social 
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Pourjavad and 

Mayorga (2019) 

 

Strategic 

 

Fuzzy 

Programming 

 

Demand, products 

returned rates & 

facilities 

capacities 

 

Economic, 

Environmental & 

Social 

 

Purohit et al. (2016) 
 

Tactical 

 

Stochastic 

Dynamic 

Optimization 

 

Demand 

 

Economic & 

Environmental 

 

Rahmani and 

Mahoodian (2017) 

 

Strategic & 

Operational 

 

Robust 

Optimization 

 

Demand 

 

Economic & 

Environmental 

 

Rajendran and Ravi 

Ravindran (2019) 

 

Tactical 

 

Stochastic 

Programming 

 

Demand 
 

N/A 

 

Ren et al. (2019) 
 

Strategic 

 

Stochastic 

Programming 

 

Carbon tax 

rate/price 

 

Economic & 

Environmental 

 

Sahling and Kayser 

(2016) 

 

Strategic 

 

Stochastic 

Programming 

 

Demand 
 

N/A 

 

Samuel et al. (2020) 
 

Strategic 

 

 

Robust 

Optimization 

 

 

Returned products 

quality 

 

 

Economic & 

Environmental 

 

Sazvar et al. (2014) 

 

Tactical & 

Operational 

 

Stochastic 

Dynamic 

Optimization 

 

Demand 

 

Economic & 

Environmental 

 

Schildbach and 

Morari (2016) 

 

Strategic 

 

Stochastic 

Programming 

 

Demand 
 

N/A 

 

Schön and König 

(2018) 

 

Tactical 

 

Stochastic 

Dynamic 

Optimization 

 

Future delays 
 

N/A 

 

Shabani and Sowlati 

(2016) 

 

Tactical 

 

Robust & 

Stochastic 

Dynamic 

Optimization 

 

Product supply 

quality 
N/A 

 

Shang and You 

(2018) 

 

Tactical 

 

Robust Dynamic 

Optimization 

 

Demand 
 

N/A 

 

Sherafati et al. (2019) 

 

Strategic & 

Tactical 

 

Robust 

Optimization 

 

Costs 

 

Economic, 

Environmental & 

Social 

 

Shi et al. (2019) 
 

Strategic 

 

Robust 

Optimization 

 

Waste generation 

 

Economic & 

Environmental 



 

92 

 

 

Song et al. (2017) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Demand & carbon 

tax rate/price 

 

Economic & 

Environmental 

 

Stefansdottir and 

Grunow (2018) 

 

Tactical 

 

Stochastic 

Programming 

 

Demand 
 

N/A 

 

Trochu, Chaabane, 

and Ouhimmou 

(2020) 

 

Strategic 

 

Stochastic 

Programming 

 

Recycling rates & 

Returned products 

supply 

 

Economic & 

Environmental 

 

Tsao and Thanh 

(2019) 

 

Strategic 

 

Fuzzy 

Programming & 

Robust 

Optimization 

 

Demand, CO2 

emissions & social 

costs related to 

traffic congestion, 

unemployment & 

immigration 

 

Economic, 

Environmental & 

Social 

 

Tsao et al. (2018) 

 

Strategic & 

Tactical 

 

Stochastic & 

Fuzzy 

Programming 

 

Demand, cost, 

capacity, CO2 

emissions, 

number of job 

opportunities, 

generation of 

hazardous 

products & 

average number 

of workdays lost 

due to 

implementation of 

new technologies 

 

Economic, 

Environmental & 

Social 

 

Xie et al. (2020) 

 

Strategic & 

Tactical 

 

Robust Adaptive 

Optimization 

 

Demand & load 

power 

 

N/A 

 

Yu and Solvang 

(2017) 

 

Strategic 

 

Stochastic 

Programming 

 

Generation of 

different types of 

end-of-use and 

end-of-life 

products, price of 

recycled products 

& recovered 

energy 

 

Economic & 

Environmental 

 

Yu and Solvang 

(2018) 

 

Strategic & 

Tactical 

 

Stochastic 

Programming 

 

Amount of used 

products, price of 

recovered 

products or 

energy & quality 

 

Economic & 

Environmental 
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level of used 

products 

 

Zahiri and Pishvaee 

(2017) 

 

Strategic 

 

Fuzzy 

Programming & 

Robust 

Optimization 

 

Demand, supply, 

travel time & costs 

 

N/A 

 

Zahiri et al. (2018) 

 

Strategic & 

Tactical 

 

Stochastic 

Dynamic 

Optimization 

 

Demand & Supply 
 

N/A 

 

Zahiri et al. (2020) 
 

Strategic 

 

Stochastic 

Dynamic 

Optimization 

 

Demand 
 

N/A 

 

Zhalechian et al. 

(2016) 

 

Strategic & 

Tactical 

 

Stochastic & 

Fuzzy 

Programming 

 

Distance travelled 

& transportation 

time, costs, lead 

time, number of 

created job 

opportunities, 

economic value, 

regional 

development, 

environmental 

impact of CO2 

emissions & fuel 

consumption, 

average 

acceleration of 

vehicle, front 

space of vehicle, 

coefficient of air 

friction, capacity 

of vehicles used 

 

Economic, 

Environmental & 

Social 

 

Zhen, Huang, and 

Wang (2019) 

 

Strategic 

 

Stochastic 

Programming 

 

Demand 

 

Economic & 

Environmental 
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APPENDIX B 

Table B.1 - Social subcategories of social lifecycle assessment (adapted from Benoit-Norris (2013)) 

Stakeholder Categories Subcategories (i.e., social indicators) 

Workers 

 

Freedom of Association and Collective Bargaining 
 

Child Labour 
 

Fair Salary 
 

Hours of Work 
 

Forced Labour 
 

Equal Opportunities / Discrimination 
 

Health and Safety 
 

Social Benefit / Social Security 

Local Community 

 

Delocalization and Migration 
 

Community Engagement 
 

Cultural Heritage 
 

Respect of Indigenous Rights 
 

Local Employment 
 

Access to Immaterial Resources 
 

Access to Material Resources 
 

Safe and Healthy Living Conditions 
 

Secure Living Conditions 

Society 

 

Public Commitment to Sustainability Issues 
 

Prevention and mitigation of Conflicts 
 

Contribution to Economic Development 
 

Corruption 
 

Technology Development 

Consumers 

 

Health and Safety 
 

Feedback Mechanism 
 

Privacy 

 

Transparency 

 

End-of-Life Responsibility 

Value Chain Actors 

 

Fair Competition 

 

Respect of Intellectual Property Rights 

 

Supplier Relationships 

 

Promoting Social Responsibility 
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APPENDIX C 

Figure C.2 - Calzedonia Group case-study - network elementsFigure C.2 depicts the general 

considerations on the network elements considered on the Calzedonia Group case-study. 

 

Figure C.2 - Calzedonia Group case-study - network elements 

Figure C.3 represents all entities accounted for in the Calzedonia Group case-study, namely, the 

entities, the technologies, the materials, and the transportation modes.  

 

Figure C.3 - Calzedonia Group case-study - entities names and definitions 

Figure C.4 depicts all parameters and respective assigned values related to the entities considered in 

the Calzedonia Group case-study, namely: maximum and minimum supply capacities; raw materials 

unit costs; maximum and minimum installation areas; hourly labour costs per entity; construction costs 

per entity; number of necessary workers per entity; maximum flow considered in the network; maximum 

and minimum allowed inventory levels per entity; and initial stock per entity.  
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Figure C.4 - Calzedonia Group case-study - entities parameters and values 

Figure C.5 represents the product characterization parameters, namely: product weight; price per unit 

sold; inventory cost per unit; necessary area per unit of product; recovered product costs. Besides, the 

products bill of materials (BOM) is also depicted, as well as the recovered products return fraction.  

 

Figure C.5 - Calzedonia Group case-study - products characterization 

Figure C.6 depicts the technologies characterization, where values have been assigned to the following 

parameters: maximum and minimum production capacities; installation costs; operational costs per unit 

produced; and the fixed number of workers per technologies.  

 

Figure C.6 - Calzedonia Group case-study - technologies characterization 

Figure C.7 represents the transportation modes characterization, with values assigned to relevant 

parameters, such as: maximum and minimum transportation capacities; maximum contracted 

capacities; fixed costs (total investment and monthly payments to carriers); handling costs at hub 

terminals; variable transportation costs; necessary workers per unit and per transportation mode; and, 

average vehicle consumption. Furthermore, additional relevant parameters are also accounted for, such 

as: maximum truck investment; fuel price; vehicle maintenance costs; average speed; maximum driving 

hours per week; number of weeks per stage; and weekly working hours.  
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Figure C.7 - Calzedonia Group case-study – transportation modes characterization 

Figure C.8 depicts other relevant parameters to the Calzedonia Group case-study, namely economic 

data, such as: interest rate; tax rate; and, salvage value per set considered. 

 

Figure C.8 - Calzedonia Group case-study – economic data parameters 

Figure C.9 presents the environmental parameters considered for the environmental assessment, 

obtained trough the methodology ReCiPe 2016, using SimaPro.  

 

Figure C.9 - Calzedonia Group case-study - environmental data parameters (SimaPro) 

Figure C.10 represents the social values assigned to the relevant parameters, obtained through the 

comprehensive review of the Calzedonia Group Sustainability Report (Group Calzedonia, 2019).  
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Figure C.10 - Calzedonia Group case-study - social data parameters 
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APPENDIX D 

Figure D.1 depicts all maximization and minimization values obtained for each objective function, as 

well as the obtained gap percentages in GAMS, in each case considered, from A to J. 

 

 

Figure D.1 - Calzedonia Group case-study - normalization factors per objective function in each case A – J 
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APPENDIX E 

Figure E.1 depicts both the number of restrictions and variables, as well as the execution times for cases 

A, B F, and J. 

 

Figure E.1 - Calzedonia Group case-study - runs specifications for cases A, B, F, and J 


